File size: 15,570 Bytes
59d751c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
from typing import Any, Dict, Optional, Tuple, Union

import torch
from torch import nn
from einops import rearrange
import torch.nn.functional as F

from diffusers.configuration_utils import FrozenDict

from diffusers import CogVideoXTransformer3DModel
from diffusers.models.transformers.cogvideox_transformer_3d import Transformer2DModelOutput, CogVideoXBlock
from diffusers.utils import is_torch_version
from diffusers.loaders import  PeftAdapterMixin
from diffusers.utils.torch_utils import maybe_allow_in_graph
from diffusers.models.embeddings import CogVideoXPatchEmbed, TimestepEmbedding, Timesteps, get_3d_sincos_pos_embed
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.attention import Attention, FeedForward
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor2_0
from diffusers.models.normalization import AdaLayerNorm, CogVideoXLayerNormZero, AdaLayerNormZeroSingle
from diffusers.configuration_utils import ConfigMixin, register_to_config

from .cogvideox_custom_modules import CustomCogVideoXPatchEmbed, CustomCogVideoXBlock

import pdb

class CogVideoXControlnet(ModelMixin, ConfigMixin, PeftAdapterMixin):
    _supports_gradient_checkpointing = True
    
    @register_to_config
    def __init__(
        self,
        num_attention_heads: int = 30, # 48 for 5B, 30 for 2B.
        attention_head_dim: int = 64,
        # in_channels: int = 3,
        in_channels: int = 16,
        out_channels: Optional[int] = 16, # Not used
        flip_sin_to_cos: bool = True,
        freq_shift: int = 0,
        time_embed_dim: int = 512,
        ofs_embed_dim: Optional[int] = None,
        text_embed_dim: int = 4096,
        num_layers: int = 30,
        dropout: float = 0.0,
        attention_bias: bool = True,
        sample_width: int = 90,
        sample_height: int = 60,
        sample_frames: int = 49,
        patch_size: int = 2,
        patch_size_t: Optional[int] = None,
        temporal_compression_ratio: int = 4,
        max_text_seq_length: int = 226,
        activation_fn: str = "gelu-approximate",
        timestep_activation_fn: str = "silu",
        norm_elementwise_affine: bool = True,
        norm_eps: float = 1e-5,
        spatial_interpolation_scale: float = 1.875,
        temporal_interpolation_scale: float = 1.0,
        use_rotary_positional_embeddings: bool = False,
        use_learned_positional_embeddings: bool = False,
        patch_bias: bool = True,
        out_proj_dim_factor: int = 8,
        out_proj_dim_zero_init: bool = True,
        notextinflow: bool = False,
    ):
        super().__init__()
        inner_dim = num_attention_heads * attention_head_dim
        
        self.notextinflow = notextinflow

        if not use_rotary_positional_embeddings and use_learned_positional_embeddings:
            raise ValueError(
                "There are no CogVideoX checkpoints available with disable rotary embeddings and learned positional "
                "embeddings. If you're using a custom model and/or believe this should be supported, please open an "
                "issue at https://github.com/huggingface/diffusers/issues."
            )
        
        """
            Delete below.
            In our case, FloVD, controlnet_hidden_states is already flow_latents encoded by 3D-Causal-VAE
        """
        # start_channels = in_channels * (downscale_coef ** 2)
        # input_channels = [start_channels, start_channels // 2, start_channels // 4]
        # self.unshuffle = nn.PixelUnshuffle(downscale_coef)
        
        # self.controlnet_encode_first = nn.Sequential(
        #     nn.Conv2d(input_channels[0], input_channels[1], kernel_size=1, stride=1, padding=0),
        #     nn.GroupNorm(2, input_channels[1]),
        #     nn.ReLU(),
        # )

        # self.controlnet_encode_second = nn.Sequential(
        #     nn.Conv2d(input_channels[1], input_channels[2], kernel_size=1, stride=1, padding=0),
        #     nn.GroupNorm(2, input_channels[2]),
        #     nn.ReLU(),
        # )
        
        # """
        #     Modify below.
        #     In our case, patch_embed takes encoder_hidden_states, hidden_states, controlnet_hidden_states (flow)
        # """
        # 1. Patch embedding
        self.patch_embed = CogVideoXPatchEmbed(
            patch_size=patch_size,
            in_channels=in_channels,
            embed_dim=inner_dim,
            bias=True,
            sample_width=sample_width,
            sample_height=sample_height,
            sample_frames=sample_frames,
            temporal_compression_ratio=temporal_compression_ratio,
            spatial_interpolation_scale=spatial_interpolation_scale,
            temporal_interpolation_scale=temporal_interpolation_scale,
            use_positional_embeddings=not use_rotary_positional_embeddings,
            use_learned_positional_embeddings=use_learned_positional_embeddings,
        )
        # self.patch_embed = CustomCogVideoXPatchEmbed(
        #     patch_size=patch_size,
        #     patch_size_t=patch_size_t,
        #     in_channels=in_channels,
        #     embed_dim=inner_dim,
        #     text_embed_dim=text_embed_dim,
        #     bias=patch_bias,
        #     sample_width=sample_width,
        #     sample_height=sample_height,
        #     sample_frames=sample_frames,
        #     temporal_compression_ratio=temporal_compression_ratio,
        #     max_text_seq_length=max_text_seq_length,
        #     spatial_interpolation_scale=spatial_interpolation_scale,
        #     temporal_interpolation_scale=temporal_interpolation_scale,
        #     use_positional_embeddings=not use_rotary_positional_embeddings,
        #     use_learned_positional_embeddings=use_learned_positional_embeddings,
        # )
        
        self.embedding_dropout = nn.Dropout(dropout)

        # 2. Time embeddings
        self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift)
        self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn)

        # 3. Define spatio-temporal transformers blocks
        # self.transformer_blocks = nn.ModuleList(
        #     [
        #         CogVideoXBlock(
        #             dim=inner_dim,
        #             num_attention_heads=num_attention_heads,
        #             attention_head_dim=attention_head_dim,
        #             time_embed_dim=time_embed_dim,
        #             dropout=dropout,
        #             activation_fn=activation_fn,
        #             attention_bias=attention_bias,
        #             norm_elementwise_affine=norm_elementwise_affine,
        #             norm_eps=norm_eps,
        #         )
        #         for _ in range(num_layers)
        #     ]
        # )
        self.transformer_blocks = nn.ModuleList(
            [
                CustomCogVideoXBlock(
                    dim=inner_dim,
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=attention_head_dim,
                    time_embed_dim=time_embed_dim,
                    dropout=dropout,
                    activation_fn=activation_fn,
                    attention_bias=attention_bias,
                    norm_elementwise_affine=norm_elementwise_affine,
                    norm_eps=norm_eps,
                )
                for _ in range(num_layers)
            ]
        )

        self.out_projectors = None
        if out_proj_dim_factor is not None:
            out_proj_dim = num_attention_heads * out_proj_dim_factor
            self.out_projectors = nn.ModuleList(
                [nn.Linear(inner_dim, out_proj_dim) for _ in range(num_layers)]
            )
            if out_proj_dim_zero_init:
                for out_projector in self.out_projectors:
                    self.zeros_init_linear(out_projector)   
            
        self.gradient_checkpointing = False
    
    def zeros_init_linear(self, linear: nn.Module):
        if isinstance(linear, (nn.Linear, nn.Conv1d)):
            if hasattr(linear, "weight"):
                nn.init.zeros_(linear.weight)
            if hasattr(linear, "bias"):
                nn.init.zeros_(linear.bias)
        
    def _set_gradient_checkpointing(self, module, value=False):
        self.gradient_checkpointing = value

    def compress_time(self, x, num_frames):
        x = rearrange(x, '(b f) c h w -> b f c h w', f=num_frames)
        batch_size, frames, channels, height, width = x.shape
        x = rearrange(x, 'b f c h w -> (b h w) c f')
        
        if x.shape[-1] % 2 == 1:
            x_first, x_rest = x[..., 0], x[..., 1:]
            if x_rest.shape[-1] > 0:
                x_rest = F.avg_pool1d(x_rest, kernel_size=2, stride=2)

            x = torch.cat([x_first[..., None], x_rest], dim=-1)
        else:
            x = F.avg_pool1d(x, kernel_size=2, stride=2)
        x = rearrange(x, '(b h w) c f -> (b f) c h w', b=batch_size, h=height, w=width)
        return x

    # """
    #     Add below.
    #     Load pre-trained weight from Diffusers
    #     For patch_embed, copy a projection layer for controlnet_states
    # """
    @classmethod
    def from_pretrained(cls, model_path, subfolder, **additional_kwargs):
        base = CogVideoXTransformer3DModel.from_pretrained(model_path, subfolder=subfolder)
        controlnet_config = FrozenDict({**base.config, **additional_kwargs})
        model = cls(**controlnet_config)

        missing, unexpected = model.load_state_dict(base.state_dict(), strict=False)
        print(f"Load CogVideoXTransformer3DModel.")
        # if len(missing) != 0 or len(unexpected) != 0:
        #     print(f"Missing keys: {missing}")
        #     print(f"Unexpected keys: {unexpected}")
        
        del base
        torch.cuda.empty_cache()
        
        
        return model
        
    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        controlnet_hidden_states: torch.Tensor,
        timestep: Union[int, float, torch.LongTensor],
        controlnet_valid_mask: torch.Tensor = None,
        image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        timestep_cond: Optional[torch.Tensor] = None,
        return_dict: bool = True,
    ):
        """
            Delete below.
            In our case, FloVD, controlnet_hidden_states is already flow_latents encoded by 3D-Causal-VAE
        """
        # batch_size, num_frames, channels, height, width = controlnet_states.shape
        # # 0. Controlnet encoder
        # controlnet_states = rearrange(controlnet_states, 'b f c h w -> (b f) c h w')
        # controlnet_states = self.unshuffle(controlnet_states)
        # controlnet_states = self.controlnet_encode_first(controlnet_states)
        # controlnet_states = self.compress_time(controlnet_states, num_frames=num_frames) 
        # num_frames = controlnet_states.shape[0] // batch_size

        # controlnet_states = self.controlnet_encode_second(controlnet_states)
        # controlnet_states = self.compress_time(controlnet_states, num_frames=num_frames) 
        # controlnet_states = rearrange(controlnet_states, '(b f) c h w -> b f c h w', b=batch_size)
        
        batch_size, num_frames, channels, height, width = hidden_states.shape
        

        # """
        #     Modify below.
        #     Distinguish hidden_states and controlnet_states (i.e., flow_hidden_states)
        # """
        hidden_states = torch.cat([hidden_states, controlnet_hidden_states], dim=2) # instead of image_latents, we use flow_latents for condition.
        
        # controlnet_states = self.controlnext_encoder(controlnet_states, timestep=timestep)
        # 1. Time embedding
        timesteps = timestep
        t_emb = self.time_proj(timesteps)

        # timesteps does not contain any weights and will always return f32 tensors
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
        t_emb = t_emb.to(dtype=hidden_states.dtype)
        emb = self.time_embedding(t_emb, timestep_cond)
        
        # """
        #     Modify below.
        #     patch_embed takes encoder, hidden_states, controlnet_hidden_states
        # """
        hidden_states = self.patch_embed(encoder_hidden_states, hidden_states)
        # hidden_states = self.patch_embed(encoder_hidden_states, hidden_states, controlnet_hidden_states) # output: [text_embeds, image_embeds, flow_embeds] [B, 35326, 3072]
        hidden_states = self.embedding_dropout(hidden_states)

        """
            Not modified below.
            hidden_states include both hidden_states and controlnet_hidden_states
        """
        text_seq_length = encoder_hidden_states.shape[1]
        encoder_hidden_states = hidden_states[:, :text_seq_length] # [text_embeds] [B, 226, 3072]
        hidden_states = hidden_states[:, text_seq_length:] # [image_embeds, flow_embeds] [B, 35100, 3072]

        # attention mask
        if controlnet_valid_mask is not None:
            mask_shape = controlnet_valid_mask.shape
            attention_mask = torch.nn.functional.interpolate(controlnet_valid_mask, size=(mask_shape[2], mask_shape[3]//2, mask_shape[4]//2), mode='trilinear', align_corners=False) # CFHW
            attention_mask[attention_mask>=0.5] = 1
            attention_mask[attention_mask<0.5] = 0
            attention_mask = attention_mask.to(torch.bool)
            attention_mask = rearrange(attention_mask.squeeze(1), 'b f h w -> b (f h w)') # (B, N=(fxhxw))

            # Consider encoder_hidden_states.. or do not use?? not sure..
            if not self.notextinflow:
                attention_mask = F.pad(attention_mask, (text_seq_length, 0), value=0.0)

        attention_kwargs = {
            'attention_mask': attention_mask if controlnet_valid_mask is not None else None,
            'notextinflow': self.notextinflow,
        }

        controlnet_hidden_states = ()
        # 3. Transformer blocks
        for i, block in enumerate(self.transformer_blocks):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    encoder_hidden_states,
                    emb,
                    image_rotary_emb,
                    attention_kwargs,
                    **ckpt_kwargs,
                )
            else:
                hidden_states, encoder_hidden_states = block(
                    hidden_states=hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    temb=emb,
                    image_rotary_emb=image_rotary_emb,
                    attention_kwargs=attention_kwargs,
                )
                
            if self.out_projectors is not None:
                controlnet_hidden_states += (self.out_projectors[i](hidden_states),)
            else:
                controlnet_hidden_states += (hidden_states,)

        if not return_dict:
            return (controlnet_hidden_states,)
        return Transformer2DModelOutput(sample=controlnet_hidden_states)