File size: 4,761 Bytes
59d751c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
from typing import Any, Dict, Optional, Tuple, Union

import torch
import numpy as np
from diffusers.utils import is_torch_version
from diffusers.models.transformers.cogvideox_transformer_3d import CogVideoXTransformer3DModel, Transformer2DModelOutput

import pdb

class CustomCogVideoXTransformer3DModel(CogVideoXTransformer3DModel):
    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        timestep: Union[int, float, torch.LongTensor],
        start_frame = None,
        timestep_cond: Optional[torch.Tensor] = None,
        image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        controlnet_states: torch.Tensor = None,
        controlnet_weights: Optional[Union[float, int, list, np.ndarray, torch.FloatTensor]] = 1.0,
        return_dict: bool = True,
    ):
        batch_size, num_frames, channels, height, width = hidden_states.shape

        if start_frame is not None:
            hidden_states = torch.cat([start_frame, hidden_states], dim=2)
        # 1. Time embedding
        timesteps = timestep
        t_emb = self.time_proj(timesteps)

        # timesteps does not contain any weights and will always return f32 tensors
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
        t_emb = t_emb.to(dtype=hidden_states.dtype)
        emb = self.time_embedding(t_emb, timestep_cond)

        # 2. Patch embedding
        hidden_states = self.patch_embed(encoder_hidden_states, hidden_states)
        hidden_states = self.embedding_dropout(hidden_states)

        text_seq_length = encoder_hidden_states.shape[1]
        encoder_hidden_states = hidden_states[:, :text_seq_length]
        hidden_states = hidden_states[:, text_seq_length:]

        # 3. Transformer blocks
        for i, block in enumerate(self.transformer_blocks):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    encoder_hidden_states,
                    emb,
                    image_rotary_emb,
                    **ckpt_kwargs,
                )
            else:
                hidden_states, encoder_hidden_states = block(
                    hidden_states=hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    temb=emb,
                    image_rotary_emb=image_rotary_emb,
                )

            if (controlnet_states is not None) and (i < len(controlnet_states)):
                controlnet_states_block = controlnet_states[i]
                controlnet_block_weight = 1.0
                if isinstance(controlnet_weights, (list, np.ndarray)) or torch.is_tensor(controlnet_weights):
                    controlnet_block_weight = controlnet_weights[i]
                elif isinstance(controlnet_weights, (float, int)):
                    controlnet_block_weight = controlnet_weights
                hidden_states = hidden_states + controlnet_states_block * controlnet_block_weight

        if not self.config.use_rotary_positional_embeddings:
            # CogVideoX-2B
            hidden_states = self.norm_final(hidden_states)
        else:
            # CogVideoX-5B
            hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
            hidden_states = self.norm_final(hidden_states)
            hidden_states = hidden_states[:, text_seq_length:]

        # 4. Final block
        hidden_states = self.norm_out(hidden_states, temb=emb)
        hidden_states = self.proj_out(hidden_states)

        # 5. Unpatchify
        p = self.config.patch_size
        p_t = self.config.patch_size_t

        if p_t is None:
            output = hidden_states.reshape(batch_size, num_frames, height // p, width // p, -1, p, p)
            output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4)
        else:
            output = hidden_states.reshape(
                batch_size, (num_frames + p_t - 1) // p_t, height // p, width // p, -1, p_t, p, p
            )
            output = output.permute(0, 1, 5, 4, 2, 6, 3, 7).flatten(6, 7).flatten(4, 5).flatten(1, 2)

        if not return_dict:
            return (output,)
        return Transformer2DModelOutput(sample=output)