File size: 15,318 Bytes
59d751c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import math
from typing import List, Optional, Tuple, Union, Dict, Any
import copy

import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from diffusers import CogVideoXTransformer3DModel
from diffusers.models.transformers.cogvideox_transformer_3d import CogVideoXBlock
from diffusers.models.normalization import CogVideoXLayerNormZero
from diffusers.models.attention import FeedForward
from diffusers.models.attention_processor import CogVideoXAttnProcessor2_0, Attention
from diffusers.models.embeddings import CogVideoXPatchEmbed
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
from diffusers.utils.torch_utils import maybe_allow_in_graph

from contextlib import contextmanager
from peft.tuners.lora.layer import LoraLayer  # PEFT의 LoRA 레이어 기본 클래스

import pdb

# Code heavily borrowed from https://github.com/huggingface/diffusers


class enable_lora:
    def __init__(self, modules, enable=True):
        self.modules = modules
        self.enable = enable
        self.prev_states = {}
    
    def __enter__(self):
        for module in self.modules:
            self.prev_states[module] = getattr(module, "lora_enabled", True)
            setattr(module, "lora_enabled", self.enable)
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        for module in self.modules:
            setattr(module, "lora_enabled", self.prev_states[module])
        return False



class CustomCogVideoXPatchEmbed(CogVideoXPatchEmbed):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        
        patch_size = kwargs['patch_size']
        patch_size_t = kwargs['patch_size_t']
        bias = kwargs['bias']
        in_channels = kwargs['in_channels']
        embed_dim = kwargs['embed_dim']
        
        # projection layer for flow latents
        if patch_size_t is None:
            # CogVideoX 1.0 checkpoints
            self.flow_proj = nn.Conv2d(in_channels//2, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias)
        else:
            # CogVideoX 1.5 checkpoints
            self.flow_proj = nn.Linear(in_channels//2 * patch_size * patch_size * patch_size_t, embed_dim)
        
        # Add positional embedding for flow_embeds
        if self.use_positional_embeddings or self.use_learned_positional_embeddings:
            flow_pos_embedding = self._get_positional_embeddings(self.sample_height, self.sample_width, self.sample_frames)[:,self.max_text_seq_length:] # shape: [1, 17550, 3072]
            self.flow_pos_embedding = nn.Parameter(flow_pos_embedding)
        
    def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor, flow_embeds: torch.Tensor):
        r"""
        Args:
            text_embeds (`torch.Tensor`):
                Input text embeddings. Expected shape: (batch_size, seq_length, embedding_dim).
            image_embeds (`torch.Tensor`):
                Input image embeddings. Expected shape: (batch_size, num_frames, channels, height, width).
            flow_embeds (`torch.Tensor`):
                Input flow embeddings. Expected shape: (batch_size, num_frames, channels, height, width).
        """
        text_embeds = self.text_proj(text_embeds)

        batch_size, num_frames, channels, height, width = image_embeds.shape

        if self.patch_size_t is None:
            # embed video latents
            image_embeds = image_embeds.reshape(-1, channels, height, width)
            image_embeds = self.proj(image_embeds)
            image_embeds = image_embeds.view(batch_size, num_frames, *image_embeds.shape[1:])
            image_embeds = image_embeds.flatten(3).transpose(2, 3)  # [batch, num_frames, height x width, channels]
            image_embeds = image_embeds.flatten(1, 2)  # [batch, num_frames x height x width, channels]
            
            # embed flow latents
            flow_embeds = flow_embeds.reshape(-1, channels//2, height, width)
            flow_embeds = self.flow_proj(flow_embeds)
            flow_embeds = flow_embeds.view(batch_size, num_frames, *flow_embeds.shape[1:])
            flow_embeds = flow_embeds.flatten(3).transpose(2, 3)  # [batch, num_frames, height x width, channels]
            flow_embeds = flow_embeds.flatten(1, 2)  # [batch, num_frames x height x width, channels]    
        else:
            p = self.patch_size
            p_t = self.patch_size_t

            # embed video latents
            image_embeds = image_embeds.permute(0, 1, 3, 4, 2)
            image_embeds = image_embeds.reshape(
                batch_size, num_frames // p_t, p_t, height // p, p, width // p, p, channels
            )
            image_embeds = image_embeds.permute(0, 1, 3, 5, 7, 2, 4, 6).flatten(4, 7).flatten(1, 3)
            image_embeds = self.proj(image_embeds)
            
            # embed flow latents
            flow_embeds = flow_embeds.permute(0, 1, 3, 4, 2)
            flow_embeds = flow_embeds.reshape(
                batch_size, num_frames // p_t, p_t, height // p, p, width // p, p, channels//2
            )
            flow_embeds = flow_embeds.permute(0, 1, 3, 5, 7, 2, 4, 6).flatten(4, 7).flatten(1, 3)
            flow_embeds = self.flow_proj(flow_embeds)
        
        # Curriculum learning of flow token
        # flow_embeds = self.flow_scale * flow_embeds


        embeds = torch.cat(
            [text_embeds, image_embeds, flow_embeds], dim=1
        ).contiguous()  # [batch, num_frames x height x width + seq_length + num_frames x height x width, channels]

        if self.use_positional_embeddings or self.use_learned_positional_embeddings:
            if self.use_learned_positional_embeddings and (self.sample_width != width or self.sample_height != height):
                raise ValueError(
                    "It is currently not possible to generate videos at a different resolution that the defaults. This should only be the case with 'THUDM/CogVideoX-5b-I2V'."
                    "If you think this is incorrect, please open an issue at https://github.com/huggingface/diffusers/issues."
                )

            pre_time_compression_frames = (num_frames - 1) * self.temporal_compression_ratio + 1

            if (
                self.sample_height != height
                or self.sample_width != width
                or self.sample_frames != pre_time_compression_frames
            ):
                pos_embedding = self._get_positional_embeddings(
                    height, width, pre_time_compression_frames, device=embeds.device
                )
            else:
                pos_embedding = self.pos_embedding

            # Previous version..                  
            # pos_embedding = pos_embedding.to(dtype=embeds.dtype)
            # embeds = embeds + pos_embedding
            
            # Add flow embedding..
            # flow_pos_embedding = self.flow_pos_scale * self.flow_pos_embedding
            flow_pos_embedding = self.flow_pos_embedding
            pos_embedding_total = torch.cat([pos_embedding, flow_pos_embedding], dim=1).to(dtype=embeds.dtype)
            embeds = embeds + pos_embedding_total

        return embeds



@maybe_allow_in_graph
class CustomCogVideoXBlock(nn.Module):
    r"""
    Transformer block used in [CogVideoX](https://github.com/THUDM/CogVideo) model.

    Parameters:
        dim (`int`):
            The number of channels in the input and output.
        num_attention_heads (`int`):
            The number of heads to use for multi-head attention.
        attention_head_dim (`int`):
            The number of channels in each head.
        time_embed_dim (`int`):
            The number of channels in timestep embedding.
        dropout (`float`, defaults to `0.0`):
            The dropout probability to use.
        activation_fn (`str`, defaults to `"gelu-approximate"`):
            Activation function to be used in feed-forward.
        attention_bias (`bool`, defaults to `False`):
            Whether or not to use bias in attention projection layers.
        qk_norm (`bool`, defaults to `True`):
            Whether or not to use normalization after query and key projections in Attention.
        norm_elementwise_affine (`bool`, defaults to `True`):
            Whether to use learnable elementwise affine parameters for normalization.
        norm_eps (`float`, defaults to `1e-5`):
            Epsilon value for normalization layers.
        final_dropout (`bool` defaults to `False`):
            Whether to apply a final dropout after the last feed-forward layer.
        ff_inner_dim (`int`, *optional*, defaults to `None`):
            Custom hidden dimension of Feed-forward layer. If not provided, `4 * dim` is used.
        ff_bias (`bool`, defaults to `True`):
            Whether or not to use bias in Feed-forward layer.
        attention_out_bias (`bool`, defaults to `True`):
            Whether or not to use bias in Attention output projection layer.
    """

    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        time_embed_dim: int,
        dropout: float = 0.0,
        activation_fn: str = "gelu-approximate",
        attention_bias: bool = False,
        qk_norm: bool = True,
        norm_elementwise_affine: bool = True,
        norm_eps: float = 1e-5,
        final_dropout: bool = True,
        ff_inner_dim: Optional[int] = None,
        ff_bias: bool = True,
        attention_out_bias: bool = True,
    ):
        super().__init__()

        # 1. Self Attention
        self.norm1 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)

        self.attn1 = Attention(
            query_dim=dim,
            dim_head=attention_head_dim,
            heads=num_attention_heads,
            qk_norm="layer_norm" if qk_norm else None,
            eps=1e-6,
            bias=attention_bias,
            out_bias=attention_out_bias,
            processor=CustomCogVideoXAttnProcessor2_0(),
        )

        # 2. Feed Forward
        self.norm2 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)

        self.ff = FeedForward(
            dim,
            dropout=dropout,
            activation_fn=activation_fn,
            final_dropout=final_dropout,
            inner_dim=ff_inner_dim,
            bias=ff_bias,
        )

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        temb: torch.Tensor,
        image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        attention_kwargs: Optional[Dict[str, Any]] = None,
    ) -> torch.Tensor:
        text_seq_length = encoder_hidden_states.size(1)
        attention_kwargs = attention_kwargs or {}

        # norm & modulate
        norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1(
            hidden_states, encoder_hidden_states, temb
        )

        # attention
        attn_hidden_states, attn_encoder_hidden_states = self.attn1(
            hidden_states=norm_hidden_states,
            encoder_hidden_states=norm_encoder_hidden_states,
            image_rotary_emb=image_rotary_emb,
            **attention_kwargs,
        )

        hidden_states = hidden_states + gate_msa * attn_hidden_states
        encoder_hidden_states = encoder_hidden_states + enc_gate_msa * attn_encoder_hidden_states

        # norm & modulate
        norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2(
            hidden_states, encoder_hidden_states, temb
        )

        # feed-forward
        norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1)
        ff_output = self.ff(norm_hidden_states)

        hidden_states = hidden_states + gate_ff * ff_output[:, text_seq_length:]
        encoder_hidden_states = encoder_hidden_states + enc_gate_ff * ff_output[:, :text_seq_length]

        return hidden_states, encoder_hidden_states


class CustomCogVideoXAttnProcessor2_0:
    r"""
    Processor for implementing scaled dot-product attention for the CogVideoX model. It applies a rotary embedding on
    query and key vectors, but does not include spatial normalization.
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
        notextinflow: Optional[bool] = False,
    ) -> torch.Tensor:
        text_seq_length = encoder_hidden_states.size(1)

        if not notextinflow:
            hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)

        batch_size, sequence_length, _ = hidden_states.shape

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        query = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # Apply RoPE if needed
        if image_rotary_emb is not None:
            from diffusers.models.embeddings import apply_rotary_emb

            if not notextinflow:
                query[:, :, text_seq_length:] = apply_rotary_emb(query[:, :, text_seq_length:], image_rotary_emb)
                if not attn.is_cross_attention:
                    key[:, :, text_seq_length:] = apply_rotary_emb(key[:, :, text_seq_length:], image_rotary_emb)
            else:
                query[:, :, :] = apply_rotary_emb(query[:, :, :], image_rotary_emb)
                if not attn.is_cross_attention:
                    key[:, :, :] = apply_rotary_emb(key[:, :, :], image_rotary_emb)

        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if not notextinflow:
            encoder_hidden_states, hidden_states = hidden_states.split(
                [text_seq_length, hidden_states.size(1) - text_seq_length], dim=1
            )
            
        return hidden_states, encoder_hidden_states