File size: 17,264 Bytes
59d751c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import inspect
import math
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from typing_extensions import override

import PIL
import torch
from transformers import T5EncoderModel, T5Tokenizer

from diffusers import (
    AutoencoderKLCogVideoX,
    CogVideoXDPMScheduler,
    CogVideoXImageToVideoPipeline,
    CogVideoXTransformer3DModel,
)

from diffusers.pipelines.cogvideo.pipeline_output import CogVideoXPipelineOutput
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
from diffusers.image_processor import PipelineImageInput
from diffusers.pipelines.cogvideo.pipeline_cogvideox_image2video import retrieve_timesteps
from diffusers.utils import is_torch_xla_available

import pdb

if is_torch_xla_available():
    import torch_xla.core.xla_model as xm

    XLA_AVAILABLE = True
else:
    XLA_AVAILABLE = False


class FloVDOMSMCogVideoXImageToVideoPipeline(CogVideoXImageToVideoPipeline):
    @override
    def __call__(
        self,
        image: PipelineImageInput,
        prompt: Optional[Union[str, List[str]]] = None,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_frames: int = 49,
        num_inference_steps: int = 50,
        timesteps: Optional[List[int]] = None,
        guidance_scale: float = 6,
        use_dynamic_cfg: bool = False,
        num_videos_per_prompt: int = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        output_type: str = "pil",
        return_dict: bool = True,
        attention_kwargs: Optional[Dict[str, Any]] = None,
        callback_on_step_end: Optional[
            Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
        ] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        max_sequence_length: int = 226,
    ) -> Union[CogVideoXPipelineOutput, Tuple]:
        """
        Function invoked when calling the pipeline for generation.

        Args:
            image (`PipelineImageInput`):
                The input image to condition the generation on. Must be an image, a list of images or a `torch.Tensor`.
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            height (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial):
                The height in pixels of the generated image. This is set to 480 by default for the best results.
            width (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial):
                The width in pixels of the generated image. This is set to 720 by default for the best results.
            num_frames (`int`, defaults to `48`):
                Number of frames to generate. Must be divisible by self.vae_scale_factor_temporal. Generated video will
                contain 1 extra frame because CogVideoX is conditioned with (num_seconds * fps + 1) frames where
                num_seconds is 6 and fps is 8. However, since videos can be saved at any fps, the only condition that
                needs to be satisfied is that of divisibility mentioned above.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            timesteps (`List[int]`, *optional*):
                Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
                in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
                passed will be used. Must be in descending order.
            guidance_scale (`float`, *optional*, defaults to 7.0):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            num_videos_per_prompt (`int`, *optional*, defaults to 1):
                The number of videos to generate per prompt.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
                of a plain tuple.
            attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeline class.
            max_sequence_length (`int`, defaults to `226`):
                Maximum sequence length in encoded prompt. Must be consistent with
                `self.transformer.config.max_text_seq_length` otherwise may lead to poor results.

        Examples:

        Returns:
            [`~pipelines.cogvideo.pipeline_output.CogVideoXPipelineOutput`] or `tuple`:
            [`~pipelines.cogvideo.pipeline_output.CogVideoXPipelineOutput`] if `return_dict` is True, otherwise a
            `tuple`. When returning a tuple, the first element is a list with the generated images.
        """

        if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
            callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs

        height = height or self.transformer.config.sample_height * self.vae_scale_factor_spatial
        width = width or self.transformer.config.sample_width * self.vae_scale_factor_spatial
        num_frames = num_frames or self.transformer.config.sample_frames

        num_videos_per_prompt = 1

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            image=image,
            prompt=prompt,
            height=height,
            width=width,
            negative_prompt=negative_prompt,
            callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
            latents=latents,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
        )
        self._guidance_scale = guidance_scale
        self._current_timestep = None
        self._attention_kwargs = attention_kwargs
        self._interrupt = False

        # 2. Default call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device

        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        # 3. Encode input prompt
        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
            prompt=prompt,
            negative_prompt=negative_prompt,
            do_classifier_free_guidance=do_classifier_free_guidance,
            num_videos_per_prompt=num_videos_per_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            max_sequence_length=max_sequence_length,
            device=device,
        )
        if do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds.to(negative_prompt_embeds.device)], dim=0)

        # 4. Prepare timesteps
        timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
        self._num_timesteps = len(timesteps)

        # 5. Prepare latents
        latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1

        # For CogVideoX 1.5, the latent frames should be padded to make it divisible by patch_size_t
        patch_size_t = self.transformer.config.patch_size_t
        additional_frames = 0
        if patch_size_t is not None and latent_frames % patch_size_t != 0:
            additional_frames = patch_size_t - latent_frames % patch_size_t
            num_frames += additional_frames * self.vae_scale_factor_temporal

        image = self.video_processor.preprocess(image, height=height, width=width).to(
            device, dtype=prompt_embeds.dtype
        )

        latent_channels = self.transformer.config.in_channels // 2
        latents, image_latents = self.prepare_latents(
            image,
            batch_size * num_videos_per_prompt,
            latent_channels,
            num_frames,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7. Create rotary embeds if required
        image_rotary_emb = (
            self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device)
            if self.transformer.config.use_rotary_positional_embeddings
            else None
        )

        # 8. Create ofs embeds if required
        ofs_emb = None if self.transformer.config.ofs_embed_dim is None else latents.new_full((1,), fill_value=2.0)

        # 8. Denoising loop
        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)

        with self.progress_bar(total=num_inference_steps) as progress_bar:
            # for DPM-solver++
            old_pred_original_sample = None
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue

                self._current_timestep = t
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # latent_image_input = torch.cat([image_latents] * 2) if do_classifier_free_guidance else image_latents
                # latent_model_input = torch.cat([latent_model_input, latent_image_input], dim=2)

                latent_image_input = torch.cat([image_latents] * 2) if do_classifier_free_guidance else image_latents
                latent_model_input = torch.cat([latent_model_input, latent_image_input], dim=2)

                # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
                timestep = t.expand(latent_model_input.shape[0])

                # predict noise model_output
                noise_pred = self.transformer(
                    hidden_states=latent_model_input,
                    encoder_hidden_states=prompt_embeds,
                    timestep=timestep,
                    ofs=ofs_emb,
                    image_rotary_emb=image_rotary_emb,
                    attention_kwargs=attention_kwargs,
                    return_dict=False,
                )[0]
                noise_pred = noise_pred.float()

                # perform guidance
                if use_dynamic_cfg:
                    self._guidance_scale = 1 + guidance_scale * (
                        (1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2
                    )
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                if not isinstance(self.scheduler, CogVideoXDPMScheduler):
                    latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
                else:
                    latents, old_pred_original_sample = self.scheduler.step(
                        noise_pred,
                        old_pred_original_sample,
                        t,
                        timesteps[i - 1] if i > 0 else None,
                        latents,
                        **extra_step_kwargs,
                        return_dict=False,
                    )
                latents = latents.to(prompt_embeds.dtype)

                # call the callback, if provided
                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()

                if XLA_AVAILABLE:
                    xm.mark_step()

        self._current_timestep = None

        if not output_type == "latent":
            # Discard any padding frames that were added for CogVideoX 1.5
            latents = latents[:, additional_frames:]
            video = self.decode_latents(latents)
            video = self.video_processor.postprocess_video(video=video, output_type=output_type)
        else:
            video = latents

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (video,)

        return CogVideoXPipelineOutput(frames=video)