Spaces:
Paused
Paused
File size: 14,045 Bytes
59d751c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import argparse
import datetime
import logging
from pathlib import Path
from typing import Any, List, Literal, Tuple
from pydantic import BaseModel, ValidationInfo, field_validator
class Args(BaseModel):
########## Model ##########
model_path: Path
model_name: str
model_type: Literal["i2v", "t2v", "i2vFlow"] # i2vFlow for FloVD
training_type: Literal["lora", "sft", "controlnet"] = "lora"
additional_save_blocks: List[str] | None = None
depth_ckpt_path: str
########## Output ##########
output_dir: Path = Path("train_results/{:%Y-%m-%d-%H-%M-%S}".format(datetime.datetime.now()))
report_to: Literal["tensorboard", "wandb", "all"] | None = None
tracker_name: str = "finetrainer-cogvideo"
run_name: str = "CogVideoX"
########## Data ###########
data_root: Path
caption_column: Path
image_column: Path | None = None
video_column: Path
########## Training #########
resume_from_checkpoint: Path | None = None
seed: int | None = None
train_epochs: int
train_steps: int | None = None
checkpointing_steps: int = 200
checkpointing_limit: int = 10
batch_size: int
gradient_accumulation_steps: int = 1
train_resolution: Tuple[int, int, int] # shape: (frames, height, width)
#### deprecated args: video_resolution_buckets
# if use bucket for training, should not be None
# Note1: At least one frame rate in the bucket must be less than or equal to the frame rate of any video in the dataset
# Note2: For cogvideox, cogvideox1.5
# The frame rate set in the bucket must be an integer multiple of 8 (spatial_compression_rate[4] * path_t[2] = 8)
# The height and width set in the bucket must be an integer multiple of 8 (temporal_compression_rate[8])
# video_resolution_buckets: List[Tuple[int, int, int]] | None = None
mixed_precision: Literal["no", "fp16", "bf16"]
learning_rate: float = 2e-5
optimizer: str = "adamw"
beta1: float = 0.9
beta2: float = 0.95
beta3: float = 0.98
epsilon: float = 1e-8
weight_decay: float = 1e-4
max_grad_norm: float = 1.0
lr_scheduler: str = "constant_with_warmup"
lr_warmup_steps: int = 100
lr_num_cycles: int = 1
lr_power: float = 1.0
num_workers: int = 8
pin_memory: bool = True
gradient_checkpointing: bool = True
enable_slicing: bool = True
enable_tiling: bool = True
nccl_timeout: int = 1800
########## Lora ##########
rank: int = 128
lora_alpha: int = 64
target_modules: List[str] = ["to_q", "to_k", "to_v", "to_out.0"]
########## Validation ##########
do_validation: bool = False
validation_steps: int | None # if set, should be a multiple of checkpointing_steps
validation_dir: Path | None # if set do_validation, should not be None
validation_prompts: str | None # if set do_validation, should not be None
validation_images: str | None # if set do_validation and model_type == i2v, should not be None
validation_videos: str | None # if set do_validation and model_type == v2v, should not be None
gen_fps: int = 15
max_scene: int = 8
########## Controlnet ##########
controlnet_transformer_num_layers: int = 8
controlnet_input_channels: int = 16
controlnet_weights: float = 1.0
controlnet_guidance_start: float = 0.0
controlnet_guidance_end: float = 1.0
controlnet_out_proj_dim_factor: int = 64
controlnet_out_proj_zero_init: bool = True
enable_time_sampling: bool = True
time_sampling_type: str = 'truncated_normal'
time_sampling_mean: float = 0.95
time_sampling_std: float = 0.1
use_valid_mask: bool = False
notextinflow: bool = False
#### deprecated args: gen_video_resolution
# 1. If set do_validation, should not be None
# 2. Suggest selecting the bucket from `video_resolution_buckets` that is closest to the resolution you have chosen for fine-tuning
# or the resolution recommended by the model
# 3. Note: For cogvideox, cogvideox1.5
# The frame rate set in the bucket must be an integer multiple of 8 (spatial_compression_rate[4] * path_t[2] = 8)
# The height and width set in the bucket must be an integer multiple of 8 (temporal_compression_rate[8])
# gen_video_resolution: Tuple[int, int, int] | None # shape: (frames, height, width)
@field_validator("image_column")
def validate_image_column(cls, v: str | None, info: ValidationInfo) -> str | None:
values = info.data
if values.get("model_type") == "i2v" and not v:
logging.warning(
"No `image_column` specified for i2v model. Will automatically extract first frames from videos as conditioning images."
)
return v
@field_validator("validation_dir", "validation_prompts")
def validate_validation_required_fields(cls, v: Any, info: ValidationInfo) -> Any:
values = info.data
if values.get("do_validation") and not v:
field_name = info.field_name
raise ValueError(f"{field_name} must be specified when do_validation is True")
return v
@field_validator("validation_images")
def validate_validation_images(cls, v: str | None, info: ValidationInfo) -> str | None:
values = info.data
if values.get("do_validation") and values.get("model_type") == "i2v" and not v:
raise ValueError("validation_images must be specified when do_validation is True and model_type is i2v")
return v
@field_validator("validation_videos")
def validate_validation_videos(cls, v: str | None, info: ValidationInfo) -> str | None:
values = info.data
if values.get("do_validation") and values.get("model_type") == "v2v" and not v:
raise ValueError("validation_videos must be specified when do_validation is True and model_type is v2v")
return v
@field_validator("validation_steps")
def validate_validation_steps(cls, v: int | None, info: ValidationInfo) -> int | None:
values = info.data
if values.get("do_validation"):
if v is None:
raise ValueError("validation_steps must be specified when do_validation is True")
if values.get("checkpointing_steps") and v % values["checkpointing_steps"] != 0:
raise ValueError("validation_steps must be a multiple of checkpointing_steps")
return v
@field_validator("train_resolution")
def validate_train_resolution(cls, v: Tuple[int, int, int], info: ValidationInfo) -> str:
try:
frames, height, width = v
# Check if (frames - 1) is multiple of 8
if (frames - 1) % 8 != 0:
raise ValueError("Number of frames - 1 must be a multiple of 8")
# Check resolution for cogvideox-5b models
model_name = info.data.get("model_name", "")
if model_name in ["cogvideox-5b-i2v", "cogvideox-5b-t2v"]:
if (height, width) != (480, 720):
raise ValueError("For cogvideox-5b models, height must be 480 and width must be 720")
return v
except ValueError as e:
if (
str(e) == "not enough values to unpack (expected 3, got 0)"
or str(e) == "invalid literal for int() with base 10"
):
raise ValueError("train_resolution must be in format 'frames x height x width'")
raise e
@field_validator("mixed_precision")
def validate_mixed_precision(cls, v: str, info: ValidationInfo) -> str:
if v == "fp16" and "cogvideox-2b" not in str(info.data.get("model_path", "")).lower():
logging.warning(
"All CogVideoX models except cogvideox-2b were trained with bfloat16. "
"Using fp16 precision may lead to training instability."
)
return v
@classmethod
def parse_args(cls):
"""Parse command line arguments and return Args instance"""
parser = argparse.ArgumentParser()
# Required arguments
parser.add_argument("--model_path", type=str, required=True)
parser.add_argument("--model_name", type=str, required=True)
parser.add_argument("--model_type", type=str, required=True)
parser.add_argument("--depth_ckpt_path", type=str, required=False, default="./ckpt/others/depth_anything_v2_metric_hypersim_vitb.pth", help="Path to the checkpoint of the depth estimation networks")
parser.add_argument("--training_type", type=str, required=True)
parser.add_argument("--additional_save_blocks", type=str, required=False, default=None)
parser.add_argument("--output_dir", type=str, required=True)
parser.add_argument("--data_root", type=str, required=True)
parser.add_argument("--caption_column", type=str, required=True)
parser.add_argument("--video_column", type=str, required=True)
parser.add_argument("--train_resolution", type=str, required=True)
parser.add_argument("--report_to", type=str, required=True)
parser.add_argument("--run_name", type=str, required=False, default='CogVideoX')
# Training hyperparameters
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--train_epochs", type=int, default=10)
parser.add_argument("--train_steps", type=int, default=None)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--learning_rate", type=float, default=2e-5)
parser.add_argument("--optimizer", type=str, default="adamw")
parser.add_argument("--beta1", type=float, default=0.9)
parser.add_argument("--beta2", type=float, default=0.95)
parser.add_argument("--beta3", type=float, default=0.98)
parser.add_argument("--epsilon", type=float, default=1e-8)
parser.add_argument("--weight_decay", type=float, default=1e-4)
parser.add_argument("--max_grad_norm", type=float, default=1.0)
# Learning rate scheduler
parser.add_argument("--lr_scheduler", type=str, default="constant_with_warmup")
parser.add_argument("--lr_warmup_steps", type=int, default=100)
parser.add_argument("--lr_num_cycles", type=int, default=1)
parser.add_argument("--lr_power", type=float, default=1.0)
# Data loading
parser.add_argument("--num_workers", type=int, default=8)
parser.add_argument("--pin_memory", type=bool, default=True)
parser.add_argument("--image_column", type=str, default=None)
# Model configuration
parser.add_argument("--mixed_precision", type=str, default="no")
parser.add_argument("--gradient_checkpointing", type=bool, default=True)
parser.add_argument("--enable_slicing", type=bool, default=True)
parser.add_argument("--enable_tiling", type=bool, default=True)
parser.add_argument("--nccl_timeout", type=int, default=1800)
# LoRA parameters
parser.add_argument("--rank", type=int, default=128)
parser.add_argument("--lora_alpha", type=int, default=64)
parser.add_argument("--target_modules", type=str, nargs="+", default=["to_q", "to_k", "to_v", "to_out.0"])
# Checkpointing
parser.add_argument("--checkpointing_steps", type=int, default=200)
parser.add_argument("--checkpointing_limit", type=int, default=10)
parser.add_argument("--resume_from_checkpoint", type=str, default=None)
# Validation
parser.add_argument("--do_validation", type=lambda x: x.lower() == 'true', default=False)
parser.add_argument("--validation_steps", type=int, default=None)
parser.add_argument("--validation_dir", type=str, default=None)
parser.add_argument("--validation_prompts", type=str, default=None)
parser.add_argument("--validation_images", type=str, default=None)
parser.add_argument("--validation_videos", type=str, default=None)
parser.add_argument("--gen_fps", type=int, default=15)
parser.add_argument("--max_scene", type=int, default=8)
# Controlnet
parser.add_argument("--controlnet_transformer_num_layers", type=int, default=8)
parser.add_argument("--controlnet_input_channels", type=int, default=16)
parser.add_argument("--controlnet_weights", type=float, default=1.0)
parser.add_argument("--controlnet_guidance_start", type=float, default=0.0)
parser.add_argument("--controlnet_guidance_end", type=float, default=1.0)
parser.add_argument("--controlnet_out_proj_dim_factor", type=int, default=64)
parser.add_argument("--controlnet_out_proj_zero_init", type=bool, default=True)
parser.add_argument("--enable_time_sampling", type=bool, default=True)
# parser.add_argument("--enable_time_sampling", type=lambda x: x.lower() == 'true', default=False)
parser.add_argument("--time_sampling_type", type=str, default='truncated_normal')
parser.add_argument("--time_sampling_mean", type=float, default=0.95)
parser.add_argument("--time_sampling_std", type=float, default=0.1)
parser.add_argument("--use_valid_mask", type=bool, default=False)
parser.add_argument("--notextinflow", type=bool, default=False)
args = parser.parse_args()
# Convert video_resolution_buckets string to list of tuples
frames, height, width = args.train_resolution.split("x")
args.train_resolution = (int(frames), int(height), int(width))
if args.additional_save_blocks is not None:
args.additional_save_blocks = args.additional_save_blocks.split(',')
if not args.training_type == 'lora':
# Use additional trainable blocks only for 'lora' setting
assert args.additional_save_blocks is None
return cls(**vars(args))
|