File size: 34,815 Bytes
7a07718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
"""
This script demonstrates how to generate a video using the CogVideoX model with the Hugging Face `diffusers` pipeline.
The script supports different types of video generation, including text-to-video (t2v), image-to-video (i2v),
and video-to-video (v2v), depending on the input data and different weight.

- text-to-video: THUDM/CogVideoX-5b, THUDM/CogVideoX-2b or THUDM/CogVideoX1.5-5b
- video-to-video: THUDM/CogVideoX-5b, THUDM/CogVideoX-2b or THUDM/CogVideoX1.5-5b
- image-to-video: THUDM/CogVideoX-5b-I2V or THUDM/CogVideoX1.5-5b-I2V

Running the Script:
To run the script, use the following command with appropriate arguments:

```bash
$ python cli_demo.py --prompt "A girl riding a bike." --model_path THUDM/CogVideoX1.5-5b --generate_type "t2v"
```

You can change `pipe.enable_sequential_cpu_offload()` to `pipe.enable_model_cpu_offload()` to speed up inference, but this will use more GPU memory

Additional options are available to specify the model path, guidance scale, number of inference steps, video generation type, and output paths.

"""
from typing import TYPE_CHECKING, Any, Dict, List, Tuple
import argparse
import logging
import os
import sys
from typing import Literal, Optional
from pathlib import Path
import json
from datetime import timedelta
import random
from safetensors.torch import load_file, save_file
from tqdm import tqdm
from einops import rearrange, repeat
import math
import numpy as np
from PIL import Image

import torch

from diffusers import (
    CogVideoXDPMScheduler,
    CogVideoXImageToVideoPipeline,
    CogVideoXPipeline,
    CogVideoXVideoToVideoPipeline,
    AutoencoderKLCogVideoX,
    CogVideoXTransformer3DModel,
)
from diffusers.utils import export_to_video, load_image, load_video
from peft import LoraConfig, get_peft_model_state_dict, set_peft_model_state_dict

sys.path.append(os.path.abspath(os.path.join(sys.path[0], "../")))
from finetune.pipeline.flovd_FVSM_cogvideox_controlnet_pipeline import FloVDCogVideoXControlnetImageToVideoPipeline
from finetune.pipeline.flovd_OMSM_cogvideox_pipeline import FloVDOMSMCogVideoXImageToVideoPipeline
from finetune.schemas import Components, Args
from finetune.modules.cogvideox_controlnet import CogVideoXControlnet
from finetune.modules.cogvideox_custom_model import CustomCogVideoXTransformer3DModel
from transformers import AutoTokenizer, T5EncoderModel

from finetune.modules.camera_sampler import SampleManualCam
from finetune.modules.camera_flow_generator import CameraFlowGenerator
from finetune.modules.utils import get_camera_flow_generator_input, forward_bilinear_splatting, flow_to_color
from finetune.modules.depth_warping.depth_warping import unnormalize_intrinsic

from finetune.datasets.utils import (
    preprocess_image_with_resize,
    preprocess_video_with_resize,
)


from torch.utils.data import Dataset
from torchvision import transforms

import torch.distributed as dist
from torch.utils.data.distributed import DistributedSampler

import pdb
sys.path.append(os.path.abspath(os.path.join(sys.path[-1], 'finetune'))) # for camera flow generator


os.environ["TOKENIZERS_PARALLELISM"] = "false"


logging.basicConfig(level=logging.INFO)

# Recommended resolution for each model (width, height)
RESOLUTION_MAP = {
    # cogvideox1.5-*
    "cogvideox1.5-5b-i2v": (768, 1360),
    "cogvideox1.5-5b": (768, 1360),
    # cogvideox-*
    "cogvideox-5b-i2v": (480, 720),
    "cogvideox-5b": (480, 720),
    "cogvideox-2b": (480, 720),
}




def init_dist(launcher="slurm", backend='nccl', port=29500, **kwargs):
    """Initializes distributed environment."""
    if launcher == 'pytorch':
        rank = int(os.environ['RANK'])
        num_gpus = torch.cuda.device_count()
        local_rank = rank % num_gpus
        torch.cuda.set_device(local_rank)
        dist.init_process_group(backend=backend, timeout=timedelta(minutes=30), **kwargs)

    elif launcher == 'slurm':
        proc_id = int(os.environ['SLURM_PROCID'])
        ntasks = int(os.environ['SLURM_NTASKS'])
        node_list = os.environ['SLURM_NODELIST']
        num_gpus = torch.cuda.device_count()
        local_rank = proc_id % num_gpus
        torch.cuda.set_device(local_rank)
        addr = subprocess.getoutput(
            f'scontrol show hostname {node_list} | head -n1')
        os.environ['MASTER_ADDR'] = addr
        os.environ['WORLD_SIZE'] = str(ntasks)
        os.environ['RANK'] = str(proc_id)
        port = os.environ.get('PORT', port)
        os.environ['MASTER_PORT'] = str(port)
        dist.init_process_group(backend=backend, timeout=timedelta(minutes=30))

    else:
        raise NotImplementedError(f'Not implemented launcher type: `{launcher}`!')
    # https://github.com/pytorch/pytorch/issues/98763
    # torch.cuda.set_device(local_rank)

    return local_rank


def load_cogvideox_flovd_FVSM_controlnet_pipeline(controlnet_path, backbone_path, device, dtype):
    controlnet_sd = torch.load(controlnet_path, map_location='cpu')['module']
    
    tokenizer = AutoTokenizer.from_pretrained(backbone_path, subfolder="tokenizer")
    text_encoder = T5EncoderModel.from_pretrained(backbone_path, subfolder="text_encoder")
    transformer = CustomCogVideoXTransformer3DModel.from_pretrained(backbone_path, subfolder="transformer")
    vae = AutoencoderKLCogVideoX.from_pretrained(backbone_path, subfolder="vae")
    scheduler = CogVideoXDPMScheduler.from_pretrained(backbone_path, subfolder="scheduler")
    
    additional_kwargs = {
        'num_layers': 6,
        'out_proj_dim_factor': 64,
        'out_proj_dim_zero_init': True,
        'notextinflow': True,
    }
    controlnet = CogVideoXControlnet.from_pretrained(backbone_path, subfolder="transformer", **additional_kwargs)
    controlnet.eval()
    
    missing, unexpected = controlnet.load_state_dict(controlnet_sd)
    
    if len(missing) != 0 or len(unexpected) != 0:
        print(f"Missing keys : {missing}")
        print(f"Unexpected keys : {unexpected}")
        
    pipe = FloVDCogVideoXControlnetImageToVideoPipeline(
            tokenizer=tokenizer,
            text_encoder=text_encoder,
            vae=vae,
            transformer=transformer,
            controlnet=controlnet,
            scheduler=scheduler,
    )
    
    # pipe.enable_model_cpu_offload(device=device)
    pipe = pipe.to(device, dtype)
    
    return pipe

def load_cogvideox_flovd_OMSM_lora_pipeline(omsm_path, backbone_path, transformer_lora_config, device, dtype):
    tokenizer = AutoTokenizer.from_pretrained(backbone_path, subfolder="tokenizer")
    text_encoder = T5EncoderModel.from_pretrained(backbone_path, subfolder="text_encoder")
    transformer = CogVideoXTransformer3DModel.from_pretrained(backbone_path, subfolder="transformer")
    vae = AutoencoderKLCogVideoX.from_pretrained(backbone_path, subfolder="vae")
    scheduler = CogVideoXDPMScheduler.from_pretrained(backbone_path, subfolder="scheduler")

    # 1) Load Lora weight
    transformer.add_adapter(transformer_lora_config)

    lora_state_dict = FloVDOMSMCogVideoXImageToVideoPipeline.lora_state_dict(omsm_path)
    transformer_state_dict = {
        f'{k.replace("transformer.", "")}': v
        for k, v in lora_state_dict.items()
        if k.startswith("transformer.")
    }
    incompatible_keys = set_peft_model_state_dict(transformer, transformer_state_dict, adapter_name="default")
    if incompatible_keys is not None:
        # check only for unexpected keys
        unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
        if unexpected_keys:
            logger.warning(
                f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
                f" {unexpected_keys}. "
            )

    # 2) Load Other weight
    load_path = os.path.join(omsm_path, "selected_blocks.safetensors")
    if os.path.exists(load_path):
        tensor_dict = load_file(load_path)
        
        block_state_dicts = {}
        for k, v in tensor_dict.items():
            block_name, param_name = k.split(".", 1)
            if block_name not in block_state_dicts:
                block_state_dicts[block_name] = {}
            block_state_dicts[block_name][param_name] = v
        
        for block_name, state_dict in block_state_dicts.items():
            if hasattr(transformer, block_name):
                getattr(transformer, block_name).load_state_dict(state_dict)
            else:
                raise ValueError(f"Transformer has no attribute '{block_name}'")
    
    
    pipe = FloVDOMSMCogVideoXImageToVideoPipeline(
            tokenizer=tokenizer,
            text_encoder=text_encoder,
            vae=vae,
            transformer=transformer,
            scheduler=scheduler,
    )
    
    # pipe.load_lora_weights(omsm_path, weight_name="pytorch_lora_weights.safetensors", adapter_name="test_1")
    # pipe.fuse_lora(components=["transformer"], lora_scale=1.0)
    
    # pipe.enable_model_cpu_offload(device=device)
    pipe = pipe.to(device, dtype)
    
    return pipe


class I2VFlowDataset_Inference(Dataset):
    def __init__(
        self, 
        max_num_frames: int, 
        height: int, 
        width: int, 
        data_root: str,
        max_num_videos: int = None,
    ) -> None:
        
        self.train_resolution = (int(max_num_frames), int(height), int(width))
        
        data_root = Path(data_root)
        metadata_path = data_root / "metadata_reformat.jsonl"
        assert metadata_path.is_file(), "For this dataset type, you need metadata.jsonl in the root path"
        
        metadata = []
        with open(metadata_path, "r") as f:
            for line in f:
                metadata.append( json.loads(line) )
        
        metadata = random.sample(metadata, max_num_videos)

        self.prompts = [x["prompt"] for x in metadata]
        self.prompt_embeddings = [data_root / "prompt_embeddings_revised" / (x["hash_code"] + '.safetensors') for x in metadata]
        self.videos = [data_root / "video_latent" / "x".join(str(x) for x in self.train_resolution) / (x["hash_code"] + '.safetensors') for x in metadata]
        self.images = [data_root / "first_frames" / (x["hash_code"] + '.png') for x in metadata]
        self.flows = [data_root / "flow_direct_f_latent" / (x["hash_code"] + '.safetensors') for x in metadata]
        self.masks = [data_root / "valid_mask" / (x["hash_code"] + '.bin') for x in metadata]
        
        self.max_num_frames = max_num_frames
        self.height = height
        self.width = width

        self.__frame_transforms = transforms.Compose([transforms.Lambda(lambda x: x / 255.0 * 2.0 - 1.0)])
        self.__image_transforms = self.__frame_transforms
        
        self.length = len(self.videos)

        print(f"Dataset size: {self.length}")
        
    def __len__(self) -> int:
        return self.length
    
    def load_data_pair(self, index):
        prompt_embedding_path = self.prompt_embeddings[index]
        encoded_video_path = self.videos[index]
        encoded_flow_path = self.flows[index]
        
        prompt_embedding = load_file(prompt_embedding_path)["prompt_embedding"] 
        encoded_video = load_file(encoded_video_path)["encoded_video"] # CFHW
        encoded_flow = load_file(encoded_flow_path)["encoded_flow_f"] # CFHW
    
        return prompt_embedding, encoded_video, encoded_flow

    def __getitem__(self, index: int) -> Dict[str, Any]:
        while True:
            try:
                prompt_embedding, encoded_video, encoded_flow = self.load_data_pair(index)
                break
            except Exception as e:
                print(f"Error loading {self.prompt_embeddings[index]}: {str(e)}")
                index = random.randint(0, self.length - 1)
            
        image_path = self.images[index]
        prompt = self.prompts[index]
        
        _, image = self.preprocess(None, image_path)
        image = self.image_transform(image)
        
        
        # shape of encoded_video: [C, F, H, W]
        # shape and scale of image: [C, H, W], [-1,1]
        return {
            "image": image,
            "prompt": prompt,
            "prompt_embedding": prompt_embedding,
            "encoded_video": encoded_video,
            "encoded_flow": encoded_flow,
            "video_metadata": {
                "num_frames": encoded_video.shape[1],
                "height": encoded_video.shape[2],
                "width": encoded_video.shape[3],
            },
        }
    
    def preprocess(self, video_path: Path | None, image_path: Path | None) -> Tuple[torch.Tensor, torch.Tensor]:
        if video_path is not None:
            video = preprocess_video_with_resize(video_path, self.max_num_frames, self.height, self.width)
        else:
            video = None
        if image_path is not None:
            image = preprocess_image_with_resize(image_path, self.height, self.width)
        else:
            image = None
        return video, image
    
    def video_transform(self, frames: torch.Tensor) -> torch.Tensor:
        return torch.stack([self.__frame_transforms(f) for f in frames], dim=0)

    def image_transform(self, image: torch.Tensor) -> torch.Tensor:
        return self.__image_transforms(image)

def initialize_flow_generator(target):
    depth_estimator_kwargs = {
        "target": target,
        "kwargs": {
            "ckpt_path": '/workspace/workspace/checkpoints/depth_anything/depth_anything_v2_metric_hypersim_vitb.pth',
            "model_config": {
                "max_depth": 20,
                "encoder": 'vitb',
                "features": 128,
                "out_channels": [96, 192, 384, 768],
            }

        }
    }

    return CameraFlowGenerator(depth_estimator_kwargs)

def integrate_flow(camera_flow, object_flow, depth_ctxt, camera_flow_generator, camera_flow_generator_input):
    # camera_flow: (BF)CHW
    # object_flow: (BF)CHW
    # depth_ctxt: B1HW
    
    B, F = camera_flow_generator_input["target"]["intrinsics"].shape[:2]
    H, W = object_flow.shape[-2:]
    
    c2w_ctxt = repeat(camera_flow_generator_input["context"]["extrinsics"], "b t h w -> (b v t) h w", v=F) # No need to apply inverse as it is an eye matrix.
    c2w_trgt = rearrange(torch.inverse(camera_flow_generator_input["target"]["extrinsics"]), "b t h w -> (b t) h w")
    intrinsics_ctxt = unnormalize_intrinsic(repeat(camera_flow_generator_input["context"]["intrinsics"], "b t h w -> (b v t) h w", v=F), size=(H, W))
        
    with torch.cuda.amp.autocast(enabled=False):
        warped_object_flow = camera_flow_generator.depth_warping_module.warper.forward_warp_displacement(
            depth1=repeat(depth_ctxt, "b c h w -> (b f) c h w", f=F),
            flow1=object_flow, 
            transformation1=c2w_ctxt, 
            transformation2=c2w_trgt, 
            intrinsic1=intrinsics_ctxt, 
            intrinsic2=None,
        )
    
    integrated_flow = camera_flow + warped_object_flow
    
    return integrated_flow
    
def save_flow(flow, filename, fps=16):
    # flow: (BF)CHW, arbitrary scale
    flow_RGB = flow_to_color(flow) # BF,C,H,W (B=1)

    frame_list = []
    for frame in flow_RGB:
        frame = (frame.permute(1,2,0).float().detach().cpu().numpy()).astype(np.uint8).clip(0,255)
        frame_list.append(Image.fromarray(frame))
    
    export_to_video(frame_list, filename, fps=fps)

def save_flow_warped_video(image, flow, filename, fps=16):
    # image: CHW, 0~255 scale
    # flow: (BF)CHW, arbitrary scale
    warped_video = forward_bilinear_splatting(repeat(image, 'c h w -> f c h w', f=flow.size(0)), flow.to(torch.float))
    
    frame_list = []
    for frame in warped_video:
        frame = (frame.permute(1,2,0).float().detach().cpu().numpy()).astype(np.uint8).clip(0,255)
        frame_list.append(Image.fromarray(frame))
    
    export_to_video(frame_list, filename, fps=fps)

def generate_video(
    # prompt: str,
    launcher: str,
    port: int,
    data_root: str,
    fvsm_path: str,
    omsm_path: str,
    num_frames: int = 81,
    width: Optional[int] = None,
    height: Optional[int] = None,
    output_path: str = "./output.mp4",
    image_path: str = "",
    num_inference_steps: int = 50,
    guidance_scale: float = 6.0,
    num_videos_per_prompt: int = 1,
    dtype: torch.dtype = torch.bfloat16,
    seed: int = 42,
    fps: int = 16,
    controlnet_guidance_end: float = 0.4,
    max_num_videos: int = None,
    use_dynamic_cfg: bool = False,
    pose_type: str = "manual",
    speed: float = 0.5,
    use_flow_integration: bool = False,
):
    """
    Generates a video based on the given prompt and saves it to the specified path.

    Parameters:
    - prompt (str): The description of the video to be generated.
    - lora_path (str): The path of the LoRA weights to be used.
    - lora_rank (int): The rank of the LoRA weights.
    - output_path (str): The path where the generated video will be saved.
    - num_inference_steps (int): Number of steps for the inference process. More steps can result in better quality.
    - num_frames (int): Number of frames to generate. CogVideoX1.0 generates 49 frames for 6 seconds at 8 fps, while CogVideoX1.5 produces either 81 or 161 frames, corresponding to 5 seconds or 10 seconds at 16 fps.
    - width (int): The width of the generated video, applicable only for CogVideoX1.5-5B-I2V
    - height (int): The height of the generated video, applicable only for CogVideoX1.5-5B-I2V
    - guidance_scale (float): The scale for classifier-free guidance. Higher values can lead to better alignment with the prompt.
    - num_videos_per_prompt (int): Number of videos to generate per prompt.
    - dtype (torch.dtype): The data type for computation (default is torch.bfloat16).
    - generate_type (str): The type of video generation (e.g., 't2v', 'i2v', 'v2v').·
    - seed (int): The seed for reproducibility.
    - fps (int): The frames per second for the generated video.
    """
    
    # Distributed
    local_rank = init_dist(launcher=launcher, port=port)
    global_rank = dist.get_rank()
    num_processes = dist.get_world_size()
    is_main_process = global_rank == 0
    
    torch.manual_seed(seed)
    random.seed(seed)
    
    if is_main_process:
        os.makedirs(os.path.join(output_path, 'generated_videos'), exist_ok=True)
        os.makedirs(os.path.join(output_path, 'generated_flow_videos'), exist_ok=True)
        os.makedirs(os.path.join(output_path, 'flow_warped_videos'), exist_ok=True)

    # 1.  Load the pre-trained CogVideoX pipeline with the specified precision (bfloat16).
    # add device_map="balanced" in the from_pretrained function and remove the enable_model_cpu_offload()
    # function to use Multi GPUs.

    image = None
    video = None

    model_name = "cogvideox-5b-i2v".lower()
    desired_resolution = RESOLUTION_MAP[model_name]
    if width is None or height is None:
        height, width = desired_resolution
        logging.info(f"\033[1mUsing default resolution {desired_resolution} for {model_name}\033[0m")
    elif (height, width) != desired_resolution:
        if generate_type == "i2v":
            # For i2v models, use user-defined width and height
            logging.warning(
                f"\033[1;31mThe width({width}) and height({height}) are not recommended for {model_name}. The best resolution is {desired_resolution}.\033[0m"
            )

    """
        # Prepare Dataset Class..
    """
    # image = load_image(image=image_or_video_path)
    
    # prompt
    # first image
    # camera parameters
    dataset = I2VFlowDataset_Inference(
        max_num_frames=num_frames,
        height=height,
        width=width,
        data_root=data_root,
        max_num_videos=max_num_videos,
    )
    
    
    distributed_sampler = DistributedSampler(
        dataset,
        num_replicas=num_processes,
        rank=global_rank,
        shuffle=False,
        seed=seed,
    )
    
    # DataLoaders creation:
    dataloader = torch.utils.data.DataLoader(
        dataset,
        batch_size=1,
        shuffle=False,
        sampler=distributed_sampler,
        num_workers=4,
        pin_memory=True,
        drop_last=False,
    )
    

    """
        # Prepare Pipeline
    """
    transformer_lora_config = LoraConfig(
        r=128,
        lora_alpha=64,
        init_lora_weights=True,
        target_modules=["to_q", "to_k", "to_v", "to_out.0", "norm1.linear", "norm2.linear", "ff.net.2"],
    )
    
    print(f'Constructing pipeline')
    pipe_omsm = load_cogvideox_flovd_OMSM_lora_pipeline(omsm_path, backbone_path="THUDM/CogVideoX-5b-I2V", transformer_lora_config=transformer_lora_config, device=local_rank, dtype=dtype)   
    pipe_fvsm = load_cogvideox_flovd_FVSM_controlnet_pipeline(fvsm_path, backbone_path="THUDM/CogVideoX-5b-I2V", device=local_rank, dtype=dtype)   
    print(f'Done loading pipeline')
    
    assert pose_type in ['re10k', 'manual'], "Choose other pose_type between ['re10k', 'manual']"
    if pose_type == 're10k':
        root_path = "./manual_poses_re10k"
    else:
        root_path = "./manual_poses"
        
    CameraSampler = SampleManualCam(pose_type=pose_type, root_path=root_path)
    camera_flow_generator_target = 'finetune.modules.depth_warping.depth_warping.DepthWarping_wrapper'
    camera_flow_generator = initialize_flow_generator(camera_flow_generator_target).to(local_rank)
    #--------------------------------------------------------------------------------------------------------


    # 2. Set Scheduler.
    # Can be changed to `CogVideoXDPMScheduler` or `CogVideoXDDIMScheduler`.
    # We recommend using `CogVideoXDDIMScheduler` for CogVideoX-2B.
    # using `CogVideoXDPMScheduler` for CogVideoX-5B / CogVideoX-5B-I2V.

    # pipe.scheduler = CogVideoXDDIMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
    pipe_fvsm.scheduler = CogVideoXDPMScheduler.from_config(pipe_fvsm.scheduler.config, timestep_spacing="trailing")
    pipe_omsm.scheduler = CogVideoXDPMScheduler.from_config(pipe_omsm.scheduler.config, timestep_spacing="trailing")

    # 3. Enable CPU offload for the model.
    # turn off if you have multiple GPUs or enough GPU memory(such as H100) and it will cost less time in inference
    # and enable to("cuda")
    # pipe.to("cuda")

    # pipe_fvsm.enable_model_cpu_offload()
    # pipe_omsm.enable_model_cpu_offload()
    # pipe_fvsm.enable_sequential_cpu_offload()
    # pipe_omsm.enable_sequential_cpu_offload()
    
    pipe_fvsm.vae.enable_slicing()
    pipe_fvsm.vae.enable_tiling()
    pipe_omsm.vae.enable_slicing()
    pipe_omsm.vae.enable_tiling()
    
    dataloader.sampler.set_epoch(1)
    dist.barrier()
    
    output_video_path = os.path.join(output_path, 'generated_videos')
    output_flow_path = os.path.join(output_path, 'generated_flow_videos')
    output_warped_video_path = os.path.join(output_path, 'flow_warped_videos')
    
    data_iter = iter(dataloader)
    for step in tqdm(range(0, len(dataloader))):
        batch = next(data_iter)
        
        prompt = batch["prompt"][0]
        image = batch["image"].to(local_rank)
        prompt_embedding = batch["prompt_embedding"].to(local_rank)
        prompt_short = prompt[:20].strip()
        
        # if step < 10:
        #     step += 1
        #     continue
        
        # Get Camera flow
        camparam, cam_name = CameraSampler.sample() # W2C
        image_torch_255 = ((image.detach().clone()+1)/2. * 255.).squeeze(0)
        camera_flow_generator_input = get_camera_flow_generator_input(image_torch_255, camparam, device=local_rank, speed=speed)
        image_torch = ((image_torch_255.unsqueeze(0) / 255.) * 2. - 1.).to(local_rank)
        
        with torch.no_grad():
            with torch.cuda.amp.autocast(enabled=True, dtype=dtype):
                
                # camera_flow, log_dict = camera_flow_generator(image_torch, camera_flow_generator_input)
                # camera_flow = camera_flow.to(local_rank, dtype)
                
                # camera_flow_latent = rearrange(encode_flow(camera_flow, pipe_omsm.vae, flow_scale_factor=[60, 36]), 'b c f h w -> b f c h w').to(local_rank, dtype)
                
                flow_latent = pipe_omsm(
                    num_frames=num_frames,
                    height=height,
                    width=width,
                    prompt=None,
                    prompt_embeds=prompt_embedding,
                    image=image,
                    generator=torch.Generator().manual_seed(seed),
                    num_inference_steps=num_inference_steps,
                    use_dynamic_cfg=use_dynamic_cfg,
                    output_type='latent'
                ).frames[0]
                object_flow = decode_flow(flow_latent.detach().clone().unsqueeze(0).to(local_rank), pipe_omsm.vae, flow_scale_factor=[60, 36]) # BF,C,H,W
                
                if use_flow_integration:
                    # Integrate camera (from 3D warping) and object (from OMSM) flow maps
                    # Using segmentation model will be implemented later..
                    
                    camera_flow, log_dict = camera_flow_generator(image_torch, camera_flow_generator_input)
                    camera_flow = camera_flow.to(local_rank, dtype)

                    integrated_flow = integrate_flow(camera_flow, object_flow, log_dict['depth_ctxt'], camera_flow_generator, camera_flow_generator_input)
                    integrated_flow_latent = rearrange(encode_flow(integrated_flow, pipe_omsm.vae, flow_scale_factor=[60, 36]), 'b c f h w -> b f c h w').to(local_rank, dtype)
                else:
                    integrated_flow_latent = rearrange(flow_latent, '(b f) c h w -> b f c h w', b=image.size(0))
                
                # 4. Generate the video frames based on the prompt.
                # `num_frames` is the Number of frames to generate.
                video_generate = pipe_fvsm(
                    num_frames=num_frames,
                    height=height,
                    width=width,
                    prompt=None,
                    prompt_embeds=prompt_embedding,
                    image=image,
                    flow_latent=integrated_flow_latent,
                    valid_mask=None,
                    generator=torch.Generator().manual_seed(seed),
                    num_inference_steps=num_inference_steps,
                    controlnet_guidance_start = 0.0,
                    controlnet_guidance_end = controlnet_guidance_end,
                    use_dynamic_cfg=use_dynamic_cfg,
                ).frames[0]

        # Save logs
        # 1) Synthesized flow (object_flow)
        save_path = os.path.join(output_flow_path, f"{prompt_short}_DCFG-{use_dynamic_cfg}_ContGuide-{controlnet_guidance_end}_{cam_name}.mp4")
        save_flow(object_flow, filename=save_path, fps=fps)
        
        # 2) Flow-Warped Video
        save_path = os.path.join(output_warped_video_path, f"{prompt_short}_DCFG-{use_dynamic_cfg}_ContGuide-{controlnet_guidance_end}_{cam_name}.mp4")
        save_flow_warped_video(image_torch_255, object_flow, filename=save_path, fps=fps)

        # 3) Flow-Cond. Synthesized Video
        save_path = os.path.join(output_video_path, f"{prompt_short}_DCFG-{use_dynamic_cfg}_ContGuide-{controlnet_guidance_end}_{cam_name}.mp4")
        export_to_video(video_generate, save_path, fps=fps)
        
        dist.barrier()
        
        step += 1


#--------------------------------------------------------------------------------------------------
def encode_video(video: torch.Tensor, vae) -> torch.Tensor:
    # shape of input video: [B, C, F, H, W]
    video = video.to(vae.device, dtype=vae.dtype)
    latent_dist = vae.encode(video).latent_dist
    latent = latent_dist.sample() * vae.config.scaling_factor
    return latent

def encode_flow(flow, vae, flow_scale_factor):
    # flow: BF,C,H,W
    # flow_scale_factor [sf_x, sf_y]
    assert flow.ndim == 4
    num_frames, _, height, width = flow.shape

    # Normalize optical flow
    # ndim: 4 -> 5
    flow = rearrange(flow, '(b f) c h w -> b f c h w', b=1)
    flow_norm = adaptive_normalize(flow, flow_scale_factor[0], flow_scale_factor[1])

    # ndim: 5 -> 4
    flow_norm = rearrange(flow_norm, 'b f c h w -> (b f) c h w', b=1)

    # Duplicate mean value for third channel
    num_frames, _, H, W = flow_norm.shape
    flow_norm_extended = torch.empty((num_frames, 3, height, width)).to(flow_norm)
    flow_norm_extended[:,:2] = flow_norm
    flow_norm_extended[:,-1:] = flow_norm.mean(dim=1, keepdim=True)
    flow_norm_extended = rearrange(flow_norm_extended, '(b f) c h w -> b c f h w', f=num_frames)

    return encode_video(flow_norm_extended, vae)


def decode_flow(flow_latent, vae, flow_scale_factor):
    flow_latent = flow_latent.permute(0, 2, 1, 3, 4)  # [batch_size, num_channels, num_frames, height, width]
    flow_latent = 1 / vae.config.scaling_factor * flow_latent
    
    flow = vae.decode(flow_latent).sample # BCFHW

    # discard third channel (which is a mean value of f_x and f_y)
    flow = flow[:,:2].detach().clone()

    # Unnormalize optical flow
    flow = rearrange(flow, 'b c f h w -> b f c h w')
    flow = adaptive_unnormalize(flow, flow_scale_factor[0], flow_scale_factor[1])

    flow = rearrange(flow, 'b f c h w -> (b f) c h w')
    return flow # BF,C,H,W

def adaptive_normalize(flow, sf_x, sf_y):
    # x: BFCHW, optical flow
    assert flow.ndim == 5, 'Set the shape of the flow input as (B, F, C, H, W)'
    assert sf_x is not None and sf_y is not None
    b, f, c, h, w = flow.shape
    
    max_clip_x = math.sqrt(w/sf_x) * 1.0
    max_clip_y = math.sqrt(h/sf_y) * 1.0
    
    flow_norm = flow.detach().clone()
    flow_x = flow[:, :, 0].detach().clone()
    flow_y = flow[:, :, 1].detach().clone()
    
    flow_x_norm = torch.sign(flow_x) * torch.sqrt(torch.abs(flow_x)/sf_x + 1e-7)
    flow_y_norm = torch.sign(flow_y) * torch.sqrt(torch.abs(flow_y)/sf_y + 1e-7)

    flow_norm[:, :, 0] = torch.clamp(flow_x_norm, min=-max_clip_x, max=max_clip_x)
    flow_norm[:, :, 1] = torch.clamp(flow_y_norm, min=-max_clip_y, max=max_clip_y)

    return flow_norm


def adaptive_unnormalize(flow, sf_x, sf_y):
    # x: BFCHW, optical flow
    assert flow.ndim == 5, 'Set the shape of the flow input as (B, F, C, H, W)'
    assert sf_x is not None and sf_y is not None
    
    flow_orig = flow.detach().clone()
    flow_x = flow[:, :, 0].detach().clone()
    flow_y = flow[:, :, 1].detach().clone()
    
    flow_orig[:, :, 0] = torch.sign(flow_x) * sf_x * (flow_x**2 - 1e-7)
    flow_orig[:, :, 1] = torch.sign(flow_y) * sf_y * (flow_y**2 - 1e-7)
    
    return flow_orig

#--------------------------------------------------------------------------------------------------


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Generate a video from a text prompt using CogVideoX")
    # parser.add_argument("--prompt", type=str, required=True, help="The description of the video to be generated")
    parser.add_argument("--image_path", type=str, default=None, help="The path of the image to be used as the background of the video",)
    parser.add_argument("--data_root", type=str, required=True, help="The path of the dataset root",)
    parser.add_argument("--fvsm_path", type=str, required=True, help="Path of the pre-trained model use")
    parser.add_argument("--omsm_path", type=str, required=True, help="Path of the pre-trained model use")
    parser.add_argument("--output_path", type=str, default="./output.mp4", help="The path save generated video")
    parser.add_argument("--guidance_scale", type=float, default=6.0, help="The scale for classifier-free guidance")
    parser.add_argument("--num_inference_steps", type=int, default=50, help="Inference steps")
    parser.add_argument("--num_frames", type=int, default=49, help="Number of steps for the inference process")
    parser.add_argument("--width", type=int, default=None, help="The width of the generated video")
    parser.add_argument("--height", type=int, default=None, help="The height of the generated video")
    parser.add_argument("--fps", type=int, default=16, help="The frames per second for the generated video")
    parser.add_argument("--num_videos_per_prompt", type=int, default=1, help="Number of videos to generate per prompt")
    parser.add_argument("--dtype", type=str, default="bfloat16", help="The data type for computation")
    parser.add_argument("--seed", type=int, default=42, help="The seed for reproducibility")
    parser.add_argument("--controlnet_guidance_end", type=float, default=0.4, help="Controlnet guidance end during sampling")
    parser.add_argument("--max_num_videos", type=int, default=None, help="# of videos for inference")
    parser.add_argument("--use_dynamic_cfg", action='store_true')
    parser.add_argument("--pose_type", type=str, default='manual', help="pose type in the inference time")
    parser.add_argument("--speed", type=float, default=0.5, help="pose type in the inference time")
    parser.add_argument("--use_flow_integration", action='store_true')
    
    
    # DDP args
    parser.add_argument("--launcher", type=str, choices=["pytorch", "slurm"], default="pytorch")
    parser.add_argument("--world_size", default=1, type=int,
                        help="number of the distributed processes.")
    parser.add_argument('--local-rank', type=int, default=-1,
                        help='Replica rank on the current node. This field is required '
                             'by `torch.distributed.launch`.')
    parser.add_argument("--global_seed", default=42, type=int,
                        help="seed")
    parser.add_argument("--port", type=int)
    parser.add_argument("--local_rank", type=int, help="Local rank. Necessary for using the torch.distributed.launch utility.")


    args = parser.parse_args()
    dtype = torch.float16 if args.dtype == "float16" else torch.bfloat16
    
    
    generate_video(
        # prompt=args.prompt,
        launcher=args.launcher,
        port=args.port,
        data_root=args.data_root,
        fvsm_path=args.fvsm_path,
        omsm_path=args.omsm_path,
        output_path=args.output_path,
        num_frames=args.num_frames,
        width=args.width,
        height=args.height,
        image_path=args.image_path,
        num_inference_steps=args.num_inference_steps,
        guidance_scale=args.guidance_scale,
        num_videos_per_prompt=args.num_videos_per_prompt,
        dtype=dtype,
        seed=args.seed,
        fps=args.fps,
        controlnet_guidance_end=args.controlnet_guidance_end,
        max_num_videos=args.max_num_videos,
        use_dynamic_cfg=args.use_dynamic_cfg,
        pose_type=args.pose_type,
        speed=args.speed,
        use_flow_integration=args.use_flow_integration,
    )