Spaces:
Paused
Paused
File size: 25,870 Bytes
7a07718 9ab115e 7a07718 9ab115e 7a07718 b2c7867 7a07718 b2c7867 7a07718 b2c7867 7a07718 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 |
"""
This script demonstrates how to generate a video using the CogVideoX model with the Hugging Face `diffusers` pipeline.
The script supports different types of video generation, including text-to-video (t2v), image-to-video (i2v),
and video-to-video (v2v), depending on the input data and different weight.
- text-to-video: THUDM/CogVideoX-5b, THUDM/CogVideoX-2b or THUDM/CogVideoX1.5-5b
- video-to-video: THUDM/CogVideoX-5b, THUDM/CogVideoX-2b or THUDM/CogVideoX1.5-5b
- image-to-video: THUDM/CogVideoX-5b-I2V or THUDM/CogVideoX1.5-5b-I2V
Running the Script:
To run the script, use the following command with appropriate arguments:
```bash
$ python cli_demo.py --prompt "A girl riding a bike." --model_path THUDM/CogVideoX1.5-5b --generate_type "t2v"
```
You can change `pipe.enable_sequential_cpu_offload()` to `pipe.enable_model_cpu_offload()` to speed up inference, but this will use more GPU memory
Additional options are available to specify the model path, guidance scale, number of inference steps, video generation type, and output paths.
"""
from typing import TYPE_CHECKING, Any, Dict, List, Tuple
import argparse
import logging
import os
import sys
from typing import Literal, Optional
from pathlib import Path
import json
from datetime import timedelta
import random
from safetensors.torch import load_file, save_file
from tqdm import tqdm
from einops import rearrange, repeat
import math
import numpy as np
from PIL import Image
import torch
from diffusers import (
CogVideoXDPMScheduler,
CogVideoXImageToVideoPipeline,
CogVideoXPipeline,
CogVideoXVideoToVideoPipeline,
AutoencoderKLCogVideoX,
CogVideoXTransformer3DModel,
)
from diffusers.utils import export_to_video, load_image, load_video
from peft import LoraConfig, get_peft_model_state_dict, set_peft_model_state_dict
sys.path.append(os.path.abspath(os.path.join(sys.path[0], "../")))
from finetune.pipeline.flovd_FVSM_cogvideox_controlnet_pipeline import FloVDCogVideoXControlnetImageToVideoPipeline
from finetune.pipeline.flovd_OMSM_cogvideox_pipeline import FloVDOMSMCogVideoXImageToVideoPipeline
from finetune.schemas import Components, Args
from finetune.modules.cogvideox_controlnet import CogVideoXControlnet
from finetune.modules.cogvideox_custom_model import CustomCogVideoXTransformer3DModel
from transformers import AutoTokenizer, T5EncoderModel
from finetune.modules.camera_sampler import SampleManualCam
from finetune.modules.camera_flow_generator import CameraFlowGenerator
from finetune.modules.utils import get_camera_flow_generator_input, forward_bilinear_splatting, flow_to_color
from finetune.modules.depth_warping.depth_warping import unnormalize_intrinsic
from finetune.datasets.utils import (
preprocess_image_with_resize,
preprocess_video_with_resize,
)
from torch.utils.data import Dataset
from torchvision import transforms
from safetensors.torch import load_file
import pdb
sys.path.append(os.path.abspath(os.path.join(sys.path[-1], 'finetune'))) # for camera flow generator
os.environ["TOKENIZERS_PARALLELISM"] = "false"
logging.basicConfig(level=logging.INFO)
# Recommended resolution for each model (width, height)
RESOLUTION_MAP = {
# cogvideox1.5-*
"cogvideox1.5-5b-i2v": (768, 1360),
"cogvideox1.5-5b": (768, 1360),
# cogvideox-*
"cogvideox-5b-i2v": (480, 720),
"cogvideox-5b": (480, 720),
"cogvideox-2b": (480, 720),
}
def load_cogvideox_flovd_FVSM_controlnet_pipeline(controlnet_path, backbone_path, device, dtype):
controlnet_sd = torch.load(controlnet_path, map_location='cpu')['module']
tokenizer = AutoTokenizer.from_pretrained(backbone_path, subfolder="tokenizer")
text_encoder = T5EncoderModel.from_pretrained(backbone_path, subfolder="text_encoder")
transformer = CustomCogVideoXTransformer3DModel.from_pretrained(backbone_path, subfolder="transformer")
vae = AutoencoderKLCogVideoX.from_pretrained(backbone_path, subfolder="vae")
scheduler = CogVideoXDPMScheduler.from_pretrained(backbone_path, subfolder="scheduler")
additional_kwargs = {
'num_layers': 6,
'out_proj_dim_factor': 64,
'out_proj_dim_zero_init': True,
'notextinflow': True,
}
controlnet = CogVideoXControlnet.from_pretrained(backbone_path, subfolder="transformer", **additional_kwargs)
controlnet.eval()
missing, unexpected = controlnet.load_state_dict(controlnet_sd)
if len(missing) != 0 or len(unexpected) != 0:
print(f"Missing keys : {missing}")
print(f"Unexpected keys : {unexpected}")
pipe = FloVDCogVideoXControlnetImageToVideoPipeline(
tokenizer=tokenizer,
text_encoder=text_encoder,
vae=vae,
transformer=transformer,
controlnet=controlnet,
scheduler=scheduler,
)
# pipe.enable_model_cpu_offload(device=device)
pipe = pipe.to(device, dtype)
return pipe
def load_cogvideox_flovd_OMSM_lora_pipeline(omsm_path, backbone_path, transformer_lora_config, device, dtype):
tokenizer = AutoTokenizer.from_pretrained(backbone_path, subfolder="tokenizer")
text_encoder = T5EncoderModel.from_pretrained(backbone_path, subfolder="text_encoder")
transformer = CogVideoXTransformer3DModel.from_pretrained(backbone_path, subfolder="transformer")
vae = AutoencoderKLCogVideoX.from_pretrained(backbone_path, subfolder="vae")
scheduler = CogVideoXDPMScheduler.from_pretrained(backbone_path, subfolder="scheduler")
# 1) Load Lora weight
transformer.add_adapter(transformer_lora_config)
lora_path = os.path.join(omsm_path, "pytorch_lora_weights.safetensors")
lora_state_dict = load_file(lora_path)
transformer_state_dict = {
f'{k.replace("transformer.", "")}': v
for k, v in lora_state_dict.items()
if k.startswith("transformer.")
}
incompatible_keys = set_peft_model_state_dict(transformer, transformer_state_dict, adapter_name="default")
if incompatible_keys is not None:
# check only for unexpected keys
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
if unexpected_keys:
logger.warning(
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
f" {unexpected_keys}. "
)
# 2) Load Other weight
load_path = os.path.join(omsm_path, "selected_blocks.safetensors")
if os.path.exists(load_path):
tensor_dict = load_file(load_path)
block_state_dicts = {}
for k, v in tensor_dict.items():
block_name, param_name = k.split(".", 1)
if block_name not in block_state_dicts:
block_state_dicts[block_name] = {}
block_state_dicts[block_name][param_name] = v
for block_name, state_dict in block_state_dicts.items():
if hasattr(transformer, block_name):
getattr(transformer, block_name).load_state_dict(state_dict)
else:
raise ValueError(f"Transformer has no attribute '{block_name}'")
pipe = FloVDOMSMCogVideoXImageToVideoPipeline(
tokenizer=tokenizer,
text_encoder=text_encoder,
vae=vae,
transformer=transformer,
scheduler=scheduler,
)
# pipe.load_lora_weights(omsm_path, weight_name="pytorch_lora_weights.safetensors", adapter_name="test_1")
# pipe.fuse_lora(components=["transformer"], lora_scale=1.0)
# pipe.enable_model_cpu_offload(device=device)
pipe = pipe.to(device, dtype)
return pipe
def initialize_flow_generator(target, ckpt_path):
depth_estimator_kwargs = {
"target": target,
"kwargs": {
"ckpt_path": ckpt_path, # './ckpt/others/depth_anything_v2_metric_hypersim_vitb.pth',
"model_config": {
"max_depth": 20,
"encoder": 'vitb',
"features": 128,
"out_channels": [96, 192, 384, 768],
}
}
}
return CameraFlowGenerator(depth_estimator_kwargs)
def integrate_flow(camera_flow, object_flow, depth_ctxt, camera_flow_generator, camera_flow_generator_input):
# camera_flow: (BF)CHW
# object_flow: (BF)CHW
# depth_ctxt: B1HW
B, F = camera_flow_generator_input["target"]["intrinsics"].shape[:2]
H, W = object_flow.shape[-2:]
c2w_ctxt = repeat(camera_flow_generator_input["context"]["extrinsics"], "b t h w -> (b v t) h w", v=F) # No need to apply inverse as it is an eye matrix.
c2w_trgt = rearrange(torch.inverse(camera_flow_generator_input["target"]["extrinsics"]), "b t h w -> (b t) h w")
intrinsics_ctxt = unnormalize_intrinsic(repeat(camera_flow_generator_input["context"]["intrinsics"], "b t h w -> (b v t) h w", v=F), size=(H, W))
with torch.cuda.amp.autocast(enabled=False):
warped_object_flow = camera_flow_generator.depth_warping_module.warper.forward_warp_displacement(
depth1=repeat(depth_ctxt, "b c h w -> (b f) c h w", f=F),
flow1=object_flow,
transformation1=c2w_ctxt,
transformation2=c2w_trgt,
intrinsic1=intrinsics_ctxt,
intrinsic2=None,
)
integrated_flow = camera_flow + warped_object_flow
return integrated_flow
def save_flow(flow, filename, fps=16):
# flow: (BF)CHW, arbitrary scale
flow_RGB = flow_to_color(flow) # BF,C,H,W (B=1)
frame_list = []
for frame in flow_RGB:
frame = (frame.permute(1,2,0).float().detach().cpu().numpy()).astype(np.uint8).clip(0,255)
frame_list.append(Image.fromarray(frame))
export_to_video(frame_list, filename, fps=fps)
def save_flow_warped_video(image, flow, filename, fps=16):
# image: CHW, 0~255 scale
# flow: (BF)CHW, arbitrary scale
warped_video = forward_bilinear_splatting(repeat(image, 'c h w -> f c h w', f=flow.size(0)), flow.to(torch.float))
frame_list = []
for frame in warped_video:
frame = (frame.permute(1,2,0).float().detach().cpu().numpy()).astype(np.uint8).clip(0,255)
frame_list.append(Image.fromarray(frame))
export_to_video(frame_list, filename, fps=fps)
def generate_video(
prompt: str,
fvsm_path: str,
omsm_path: str,
num_frames: int = 81,
width: Optional[int] = None,
height: Optional[int] = None,
output_path: str = "./output.mp4",
image_path: str = "",
num_inference_steps: int = 50,
guidance_scale: float = 6.0,
num_videos_per_prompt: int = 1,
dtype: torch.dtype = torch.bfloat16,
seed: int = 42,
fps: int = 16,
controlnet_guidance_end: float = 0.4,
use_dynamic_cfg: bool = False,
pose_type: str = "manual",
speed: float = 0.5,
use_flow_integration: bool = False,
cam_pose_name: str = None,
depth_ckpt_path: str = "./ckpt/others/depth_anything_v2_metric_hypersim_vitb.pth",
):
"""
Generates a video based on the given prompt and saves it to the specified path.
Parameters:
- prompt (str): The description of the video to be generated.
- lora_path (str): The path of the LoRA weights to be used.
- lora_rank (int): The rank of the LoRA weights.
- output_path (str): The path where the generated video will be saved.
- num_inference_steps (int): Number of steps for the inference process. More steps can result in better quality.
- num_frames (int): Number of frames to generate. CogVideoX1.0 generates 49 frames for 6 seconds at 8 fps, while CogVideoX1.5 produces either 81 or 161 frames, corresponding to 5 seconds or 10 seconds at 16 fps.
- width (int): The width of the generated video, applicable only for CogVideoX1.5-5B-I2V
- height (int): The height of the generated video, applicable only for CogVideoX1.5-5B-I2V
- guidance_scale (float): The scale for classifier-free guidance. Higher values can lead to better alignment with the prompt.
- num_videos_per_prompt (int): Number of videos to generate per prompt.
- dtype (torch.dtype): The data type for computation (default is torch.bfloat16).
- generate_type (str): The type of video generation (e.g., 't2v', 'i2v', 'v2v').·
- seed (int): The seed for reproducibility.
- fps (int): The frames per second for the generated video.
"""
local_rank = 'cuda'
torch.manual_seed(seed)
random.seed(seed)
os.makedirs(os.path.join(output_path, 'generated_videos'), exist_ok=True)
# 1. Load the pre-trained CogVideoX pipeline with the specified precision (bfloat16).
# add device_map="balanced" in the from_pretrained function and remove the enable_model_cpu_offload()
# function to use Multi GPUs.
image = None
video = None
model_name = "cogvideox-5b-i2v".lower()
desired_resolution = RESOLUTION_MAP[model_name]
if width is None or height is None:
height, width = desired_resolution
logging.info(f"\033[1mUsing default resolution {desired_resolution} for {model_name}\033[0m")
elif (height, width) != desired_resolution:
if generate_type == "i2v":
# For i2v models, use user-defined width and height
logging.warning(
f"\033[1;31mThe width({width}) and height({height}) are not recommended for {model_name}. The best resolution is {desired_resolution}.\033[0m"
)
"""
# Prepare Pipeline
"""
transformer_lora_config = LoraConfig(
r=128,
lora_alpha=64,
init_lora_weights=True,
target_modules=["to_q", "to_k", "to_v", "to_out.0", "norm1.linear", "norm2.linear", "ff.net.2"],
)
print(f'Constructing pipeline')
pipe_omsm = load_cogvideox_flovd_OMSM_lora_pipeline(omsm_path, backbone_path="THUDM/CogVideoX-5b-I2V", transformer_lora_config=transformer_lora_config, device=local_rank, dtype=dtype)
pipe_fvsm = load_cogvideox_flovd_FVSM_controlnet_pipeline(fvsm_path, backbone_path="THUDM/CogVideoX-5b-I2V", device=local_rank, dtype=dtype)
print(f'Done loading pipeline')
"""
# Prepare inputs
"""
image = load_image(image=image_path)
assert pose_type in ['re10k', 'manual'], "Choose other pose_type between ['re10k', 'manual']"
if pose_type == 're10k':
root_path = "./assets/re10k_poses"
else:
root_path = "./assets/manual_poses"
CameraSampler = SampleManualCam(pose_type=pose_type, root_path=root_path)
camera_flow_generator_target = 'finetune.modules.depth_warping.depth_warping.DepthWarping_wrapper'
camera_flow_generator = initialize_flow_generator(camera_flow_generator_target, ckpt_path=depth_ckpt_path).to(local_rank)
#--------------------------------------------------------------------------------------------------------
# 2. Set Scheduler.
# Can be changed to `CogVideoXDPMScheduler` or `CogVideoXDDIMScheduler`.
# We recommend using `CogVideoXDDIMScheduler` for CogVideoX-2B.
# using `CogVideoXDPMScheduler` for CogVideoX-5B / CogVideoX-5B-I2V.
pipe_fvsm.scheduler = CogVideoXDPMScheduler.from_config(pipe_fvsm.scheduler.config, timestep_spacing="trailing")
pipe_omsm.scheduler = CogVideoXDPMScheduler.from_config(pipe_omsm.scheduler.config, timestep_spacing="trailing")
# 3. Enable CPU offload for the model.
# turn off if you have multiple GPUs or enough GPU memory(such as H100) and it will cost less time in inference
# and enable to("cuda")
# pipe.to("cuda")
# pipe_fvsm.enable_model_cpu_offload()
# pipe_omsm.enable_model_cpu_offload()
# pipe_fvsm.enable_sequential_cpu_offload()
# pipe_omsm.enable_sequential_cpu_offload()
pipe_fvsm.vae.enable_slicing()
pipe_fvsm.vae.enable_tiling()
pipe_omsm.vae.enable_slicing()
pipe_omsm.vae.enable_tiling()
output_video_path = os.path.join(output_path, 'generated_videos')
"""
# Inference time
"""
print("Inference time from image to video.")
image = rearrange((torch.tensor(np.array(image)).to(torch.float) / 255. * 2. - 1.).unsqueeze(0), 'b h w c -> b c h w')
image = image.to(local_rank)
prompt_short = prompt[:30].strip().replace(" ", "_")
# Get Camera flow
camparam, cam_name = CameraSampler.sample(name=cam_pose_name) # W2C
image_torch_255 = ((image.detach().clone()+1)/2. * 255.).squeeze(0)
camera_flow_generator_input = get_camera_flow_generator_input(image_torch_255, camparam, device=local_rank, speed=speed)
image_torch = ((image_torch_255.unsqueeze(0) / 255.) * 2. - 1.).to(local_rank)
with torch.no_grad():
with torch.cuda.amp.autocast(enabled=True, dtype=dtype):
flow_latent = pipe_omsm(
num_frames=num_frames,
height=height,
width=width,
prompt=prompt,
image=image,
generator=torch.Generator().manual_seed(seed),
num_inference_steps=num_inference_steps,
use_dynamic_cfg=use_dynamic_cfg,
output_type='latent'
).frames[0]
object_flow = decode_flow(flow_latent.detach().clone().unsqueeze(0).to(local_rank), pipe_omsm.vae, flow_scale_factor=[60, 36]) # BF,C,H,W
if use_flow_integration:
# Integrate camera (from 3D warping) and object (from OMSM) flow maps
# Using segmentation model will be implemented later..
camera_flow, log_dict = camera_flow_generator(image_torch, camera_flow_generator_input)
camera_flow = camera_flow.to(local_rank, dtype)
integrated_flow = integrate_flow(camera_flow, object_flow, log_dict['depth_ctxt'], camera_flow_generator, camera_flow_generator_input)
integrated_flow_latent = rearrange(encode_flow(integrated_flow, pipe_omsm.vae, flow_scale_factor=[60, 36]), 'b c f h w -> b f c h w').to(local_rank, dtype)
else:
integrated_flow_latent = rearrange(flow_latent, '(b f) c h w -> b f c h w', b=image.size(0))
# 4. Generate the video frames based on the prompt.
# `num_frames` is the Number of frames to generate.
video_generate = pipe_fvsm(
num_frames=num_frames,
height=height,
width=width,
prompt=prompt,
image=image,
flow_latent=integrated_flow_latent,
valid_mask=None,
generator=torch.Generator().manual_seed(seed),
num_inference_steps=num_inference_steps,
controlnet_guidance_start = 0.0,
controlnet_guidance_end = controlnet_guidance_end,
use_dynamic_cfg=use_dynamic_cfg,
).frames[0]
# Save Result
print("video content : ", video_generate)
save_path = os.path.join(output_video_path, f"{prompt_short}_{cam_name}.mp4")
print("video generated successfully")
export_to_video(video_generate, save_path, fps=fps)
#--------------------------------------------------------------------------------------------------
def encode_video(video: torch.Tensor, vae) -> torch.Tensor:
# shape of input video: [B, C, F, H, W]
video = video.to(vae.device, dtype=vae.dtype)
latent_dist = vae.encode(video).latent_dist
latent = latent_dist.sample() * vae.config.scaling_factor
return latent
def encode_flow(flow, vae, flow_scale_factor):
# flow: BF,C,H,W
# flow_scale_factor [sf_x, sf_y]
assert flow.ndim == 4
num_frames, _, height, width = flow.shape
# Normalize optical flow
# ndim: 4 -> 5
flow = rearrange(flow, '(b f) c h w -> b f c h w', b=1)
flow_norm = adaptive_normalize(flow, flow_scale_factor[0], flow_scale_factor[1])
# ndim: 5 -> 4
flow_norm = rearrange(flow_norm, 'b f c h w -> (b f) c h w', b=1)
# Duplicate mean value for third channel
num_frames, _, H, W = flow_norm.shape
flow_norm_extended = torch.empty((num_frames, 3, height, width)).to(flow_norm)
flow_norm_extended[:,:2] = flow_norm
flow_norm_extended[:,-1:] = flow_norm.mean(dim=1, keepdim=True)
flow_norm_extended = rearrange(flow_norm_extended, '(b f) c h w -> b c f h w', f=num_frames)
return encode_video(flow_norm_extended, vae)
def decode_flow(flow_latent, vae, flow_scale_factor):
flow_latent = flow_latent.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width]
flow_latent = 1 / vae.config.scaling_factor * flow_latent
flow = vae.decode(flow_latent).sample # BCFHW
# discard third channel (which is a mean value of f_x and f_y)
flow = flow[:,:2].detach().clone()
# Unnormalize optical flow
flow = rearrange(flow, 'b c f h w -> b f c h w')
flow = adaptive_unnormalize(flow, flow_scale_factor[0], flow_scale_factor[1])
flow = rearrange(flow, 'b f c h w -> (b f) c h w')
return flow # BF,C,H,W
def adaptive_normalize(flow, sf_x, sf_y):
# x: BFCHW, optical flow
assert flow.ndim == 5, 'Set the shape of the flow input as (B, F, C, H, W)'
assert sf_x is not None and sf_y is not None
b, f, c, h, w = flow.shape
max_clip_x = math.sqrt(w/sf_x) * 1.0
max_clip_y = math.sqrt(h/sf_y) * 1.0
flow_norm = flow.detach().clone()
flow_x = flow[:, :, 0].detach().clone()
flow_y = flow[:, :, 1].detach().clone()
flow_x_norm = torch.sign(flow_x) * torch.sqrt(torch.abs(flow_x)/sf_x + 1e-7)
flow_y_norm = torch.sign(flow_y) * torch.sqrt(torch.abs(flow_y)/sf_y + 1e-7)
flow_norm[:, :, 0] = torch.clamp(flow_x_norm, min=-max_clip_x, max=max_clip_x)
flow_norm[:, :, 1] = torch.clamp(flow_y_norm, min=-max_clip_y, max=max_clip_y)
return flow_norm
def adaptive_unnormalize(flow, sf_x, sf_y):
# x: BFCHW, optical flow
assert flow.ndim == 5, 'Set the shape of the flow input as (B, F, C, H, W)'
assert sf_x is not None and sf_y is not None
flow_orig = flow.detach().clone()
flow_x = flow[:, :, 0].detach().clone()
flow_y = flow[:, :, 1].detach().clone()
flow_orig[:, :, 0] = torch.sign(flow_x) * sf_x * (flow_x**2 - 1e-7)
flow_orig[:, :, 1] = torch.sign(flow_y) * sf_y * (flow_y**2 - 1e-7)
return flow_orig
#--------------------------------------------------------------------------------------------------
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Generate a video from a text prompt using CogVideoX")
parser.add_argument("--prompt", type=str, required=True, help="The description of the video to be generated")
parser.add_argument("--image_path", type=str, default=None, help="The path of the image to be used as the background of the video",)
parser.add_argument("--fvsm_path", type=str, required=True, help="Path of the pre-trained model use")
parser.add_argument("--omsm_path", type=str, required=True, help="Path of the pre-trained model use")
parser.add_argument("--output_path", type=str, default="./output.mp4", help="The path save generated video")
parser.add_argument("--guidance_scale", type=float, default=6.0, help="The scale for classifier-free guidance")
parser.add_argument("--num_inference_steps", type=int, default=50, help="Inference steps")
parser.add_argument("--num_frames", type=int, default=49, help="Number of steps for the inference process")
parser.add_argument("--width", type=int, default=None, help="The width of the generated video")
parser.add_argument("--height", type=int, default=None, help="The height of the generated video")
parser.add_argument("--fps", type=int, default=16, help="The frames per second for the generated video")
parser.add_argument("--num_videos_per_prompt", type=int, default=1, help="Number of videos to generate per prompt")
parser.add_argument("--dtype", type=str, default="bfloat16", help="The data type for computation")
parser.add_argument("--seed", type=int, default=42, help="The seed for reproducibility")
parser.add_argument("--controlnet_guidance_end", type=float, default=0.4, help="Controlnet guidance end during sampling")
parser.add_argument("--use_dynamic_cfg", action='store_true')
parser.add_argument("--pose_type", type=str, default='manual', help="pose type in the inference time")
parser.add_argument("--speed", type=float, default=0.5, help="pose type in the inference time")
parser.add_argument("--use_flow_integration", action='store_true')
parser.add_argument("--cam_pose_name", type=str, required=False, default=None, help="Camera trajectory name")
parser.add_argument("--depth_ckpt_path", type=str, required=False, default="./ckpt/others/depth_anything_v2_metric_hypersim_vitb.pth", help="Camera trajectory name")
args = parser.parse_args()
dtype = torch.float16 if args.dtype == "float16" else torch.bfloat16
generate_video(
prompt=args.prompt,
fvsm_path=args.fvsm_path,
omsm_path=args.omsm_path,
output_path=args.output_path,
num_frames=args.num_frames,
width=args.width,
height=args.height,
image_path=args.image_path,
num_inference_steps=args.num_inference_steps,
guidance_scale=args.guidance_scale,
num_videos_per_prompt=args.num_videos_per_prompt,
dtype=dtype,
seed=args.seed,
fps=args.fps,
controlnet_guidance_end=args.controlnet_guidance_end,
use_dynamic_cfg=args.use_dynamic_cfg,
pose_type=args.pose_type,
speed=args.speed,
use_flow_integration=args.use_flow_integration,
cam_pose_name=args.cam_pose_name,
depth_ckpt_path=args.depth_ckpt_path
)
|