Flov-space / finetune /models /cogvideox_i2v /flovd_controlnet_trainer.py
roll-ai's picture
Upload 177 files
59d751c verified
from typing import Any, Dict, List, Tuple
from pathlib import Path
import os
import hashlib
import json
import random
import wandb
import math
import numpy as np
from einops import rearrange, repeat
from safetensors.torch import load_file, save_file
from accelerate.logging import get_logger
import torch
from accelerate.utils import gather_object
from diffusers import (
AutoencoderKLCogVideoX,
CogVideoXDPMScheduler,
CogVideoXImageToVideoPipeline,
CogVideoXTransformer3DModel,
)
from diffusers.utils.export_utils import export_to_video
from finetune.pipeline.flovd_FVSM_cogvideox_controlnet_pipeline import FloVDCogVideoXControlnetImageToVideoPipeline
from finetune.constants import LOG_LEVEL, LOG_NAME
from diffusers.models.embeddings import get_3d_rotary_pos_embed
from PIL import Image
from numpy import dtype
from transformers import AutoTokenizer, T5EncoderModel
from typing_extensions import override
from finetune.schemas import Args, Components, State
from finetune.trainer import Trainer
from finetune.utils import (
cast_training_params,
free_memory,
get_memory_statistics,
string_to_filename,
unwrap_model,
)
from finetune.datasets.utils import (
preprocess_image_with_resize,
load_binary_mask_compressed,
)
from finetune.modules.cogvideox_controlnet import CogVideoXControlnet
from finetune.modules.cogvideox_custom_model import CustomCogVideoXTransformer3DModel
from finetune.modules.camera_sampler import SampleManualCam
from finetune.modules.camera_flow_generator import CameraFlowGenerator
from finetune.modules.utils import get_camera_flow_generator_input, forward_bilinear_splatting
from ..utils import register
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
import pdb
logger = get_logger(LOG_NAME, LOG_LEVEL)
class FloVDCogVideoXI2VControlnetTrainer(Trainer):
UNLOAD_LIST = ["text_encoder"]
@override
def __init__(self, args: Args) -> None:
super().__init__(args)
# For validation
self.CameraSampler = SampleManualCam()
@override
def load_components(self) -> Dict[str, Any]:
# TODO. Change the pipeline and ...
components = Components()
model_path = str(self.args.model_path)
components.pipeline_cls = FloVDCogVideoXControlnetImageToVideoPipeline
components.tokenizer = AutoTokenizer.from_pretrained(model_path, subfolder="tokenizer")
components.text_encoder = T5EncoderModel.from_pretrained(model_path, subfolder="text_encoder")
# components.transformer = CogVideoXTransformer3DModel.from_pretrained(model_path, subfolder="transformer")
components.transformer = CustomCogVideoXTransformer3DModel.from_pretrained(model_path, subfolder="transformer")
additional_kwargs = {
'num_layers': self.args.controlnet_transformer_num_layers,
'out_proj_dim_factor': self.args.controlnet_out_proj_dim_factor,
'out_proj_dim_zero_init': self.args.controlnet_out_proj_zero_init,
'notextinflow': self.args.notextinflow,
}
components.controlnet = CogVideoXControlnet.from_pretrained(model_path, subfolder="transformer", **additional_kwargs)
components.vae = AutoencoderKLCogVideoX.from_pretrained(model_path, subfolder="vae")
components.scheduler = CogVideoXDPMScheduler.from_pretrained(model_path, subfolder="scheduler")
return components
@override
def initialize_pipeline(self) -> FloVDCogVideoXControlnetImageToVideoPipeline:
# TODO. Change the pipeline and ...
pipe = FloVDCogVideoXControlnetImageToVideoPipeline(
tokenizer=self.components.tokenizer,
text_encoder=unwrap_model(self.accelerator, self.components.text_encoder),
vae=unwrap_model(self.accelerator, self.components.vae),
transformer=unwrap_model(self.accelerator, self.components.transformer),
controlnet=unwrap_model(self.accelerator, self.components.controlnet),
scheduler=self.components.scheduler,
)
return pipe
def initialize_flow_generator(self, ckpt_path):
depth_estimator_kwargs = {
"target": 'modules.depth_warping.depth_warping.DepthWarping_wrapper',
"kwargs": {
"ckpt_path": ckpt_path,
"model_config": {
"max_depth": 20,
"encoder": 'vitb',
"features": 128,
"out_channels": [96, 192, 384, 768],
}
}
}
return CameraFlowGenerator(depth_estimator_kwargs)
@override
def collate_fn(self, samples: List[Dict[str, Any]]) -> Dict[str, Any]:
ret = {"encoded_videos": [], "prompt_embedding": [], "images": [], "encoded_flow": []}
for sample in samples:
encoded_video = sample["encoded_video"]
prompt_embedding = sample["prompt_embedding"]
image = sample["image"]
encoded_flow = sample["encoded_flow"]
ret["encoded_videos"].append(encoded_video)
ret["prompt_embedding"].append(prompt_embedding)
ret["images"].append(image)
ret["encoded_flow"].append(encoded_flow)
ret["encoded_videos"] = torch.stack(ret["encoded_videos"])
ret["prompt_embedding"] = torch.stack(ret["prompt_embedding"])
ret["images"] = torch.stack(ret["images"])
ret["encoded_flow"] = torch.stack(ret["encoded_flow"])
return ret
@override
def compute_loss(self, batch) -> torch.Tensor:
prompt_embedding = batch["prompt_embedding"]
latent = batch["encoded_videos"]
images = batch["images"]
latent_flow = batch["encoded_flow"]
# Shape of prompt_embedding: [B, seq_len, hidden_size]
# Shape of latent: [B, C, F, H, W]
# Shape of images: [B, C, H, W]
# Shape of latent_flow: [B, C, F, H, W]
patch_size_t = self.state.transformer_config.patch_size_t # WJ: None in i2v setting...
if patch_size_t is not None:
ncopy = latent.shape[2] % patch_size_t
# Copy the first frame ncopy times to match patch_size_t
first_frame = latent[:, :, :1, :, :] # Get first frame [B, C, 1, H, W]
latent = torch.cat([first_frame.repeat(1, 1, ncopy, 1, 1), latent], dim=2)
assert latent.shape[2] % patch_size_t == 0
batch_size, num_channels, num_frames, height, width = latent.shape
# Get prompt embeddings
_, seq_len, _ = prompt_embedding.shape
prompt_embedding = prompt_embedding.view(batch_size, seq_len, -1).to(dtype=latent.dtype)
# Add frame dimension to images [B,C,H,W] -> [B,C,F,H,W]
images = images.unsqueeze(2)
# Add noise to images
image_noise_sigma = torch.normal(mean=-3.0, std=0.5, size=(1,), device=self.accelerator.device)
image_noise_sigma = torch.exp(image_noise_sigma).to(dtype=images.dtype)
noisy_images = images + torch.randn_like(images) * image_noise_sigma[:, None, None, None, None]
image_latent_dist = self.components.vae.encode(noisy_images.to(dtype=self.components.vae.dtype)).latent_dist
image_latents = image_latent_dist.sample() * self.components.vae.config.scaling_factor
"""
Modify below
"""
# Sample a random timestep for each sample
# timesteps = torch.randint(
# 0, self.components.scheduler.config.num_train_timesteps, (batch_size,), device=self.accelerator.device
# )
if self.args.enable_time_sampling:
if self.args.time_sampling_type == "truncated_normal":
time_sampling_dict = {
'mean': self.args.time_sampling_mean,
'std': self.args.time_sampling_std,
'a': 1 - self.args.controlnet_guidance_end,
'b': 1 - self.args.controlnet_guidance_start,
}
timesteps = torch.nn.init.trunc_normal_(
torch.empty(batch_size, device=latent.device), **time_sampling_dict
) * self.components.scheduler.config.num_train_timesteps
elif self.args.time_sampling_type == "truncated_uniform":
timesteps = torch.randint(
int((1- self.args.controlnet_guidance_end) * self.components.scheduler.config.num_train_timesteps),
int((1 - self.args.controlnet_guidance_start) * self.components.scheduler.config.num_train_timesteps),
(batch_size,), device=latent.device
)
else:
timesteps = torch.randint(
0, self.components.scheduler.config.num_train_timesteps, (batch_size,), device=self.accelerator.device
)
timesteps = timesteps.long()
# from [B, C, F, H, W] to [B, F, C, H, W]
latent = latent.permute(0, 2, 1, 3, 4)
latent_flow = latent_flow.permute(0, 2, 1, 3, 4)
image_latents = image_latents.permute(0, 2, 1, 3, 4)
assert (latent.shape[0], *latent.shape[2:]) == (image_latents.shape[0], *image_latents.shape[2:]) == (latent_flow.shape[0], *latent_flow.shape[2:])
# Padding image_latents to the same frame number as latent
padding_shape = (latent.shape[0], latent.shape[1] - 1, *latent.shape[2:])
latent_padding = image_latents.new_zeros(padding_shape)
image_latents = torch.cat([image_latents, latent_padding], dim=1)
# Add noise to latent
noise = torch.randn_like(latent)
latent_noisy = self.components.scheduler.add_noise(latent, noise, timesteps)
# Concatenate latent and image_latents in the channel dimension
# latent_img_flow_noisy = torch.cat([latent_noisy, image_latents, latent_flow], dim=2)
latent_img_noisy = torch.cat([latent_noisy, image_latents], dim=2)
# Prepare rotary embeds
vae_scale_factor_spatial = 2 ** (len(self.components.vae.config.block_out_channels) - 1)
transformer_config = self.state.transformer_config
rotary_emb = (
self.prepare_rotary_positional_embeddings(
height=height * vae_scale_factor_spatial,
width=width * vae_scale_factor_spatial,
num_frames=num_frames,
transformer_config=transformer_config,
vae_scale_factor_spatial=vae_scale_factor_spatial,
device=self.accelerator.device,
)
if transformer_config.use_rotary_positional_embeddings
else None
)
# Predict noise, For CogVideoX1.5 Only.
ofs_emb = (
None if self.state.transformer_config.ofs_embed_dim is None else latent.new_full((1,), fill_value=2.0)
)
# Controlnet feedforward
controlnet_states = self.components.controlnet(
hidden_states=latent_noisy,
encoder_hidden_states=prompt_embedding,
image_rotary_emb=rotary_emb,
controlnet_hidden_states=latent_flow,
timestep=timesteps,
return_dict=False,
)[0]
if isinstance(controlnet_states, (tuple, list)):
controlnet_states = [x.to(dtype=self.state.weight_dtype) for x in controlnet_states]
else:
controlnet_states = controlnet_states.to(dtype=self.state.weight_dtype)
# Transformer feedforward
predicted_noise = self.components.transformer(
hidden_states=latent_img_noisy,
encoder_hidden_states=prompt_embedding,
controlnet_states=controlnet_states,
controlnet_weights=self.args.controlnet_weights,
timestep=timesteps,
# ofs=ofs_emb,
image_rotary_emb=rotary_emb,
return_dict=False,
)[0]
# Denoise
latent_pred = self.components.scheduler.get_velocity(predicted_noise, latent_noisy, timesteps)
alphas_cumprod = self.components.scheduler.alphas_cumprod[timesteps]
weights = 1 / (1 - alphas_cumprod)
while len(weights.shape) < len(latent_pred.shape):
weights = weights.unsqueeze(-1)
loss = torch.mean((weights * (latent_pred - latent) ** 2).reshape(batch_size, -1), dim=1)
loss = loss.mean()
return loss
def prepare_rotary_positional_embeddings(
self,
height: int,
width: int,
num_frames: int,
transformer_config: Dict,
vae_scale_factor_spatial: int,
device: torch.device,
) -> Tuple[torch.Tensor, torch.Tensor]:
grid_height = height // (vae_scale_factor_spatial * transformer_config.patch_size)
grid_width = width // (vae_scale_factor_spatial * transformer_config.patch_size)
if transformer_config.patch_size_t is None:
base_num_frames = num_frames
else:
base_num_frames = (num_frames + transformer_config.patch_size_t - 1) // transformer_config.patch_size_t
freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
embed_dim=transformer_config.attention_head_dim,
crops_coords=None,
grid_size=(grid_height, grid_width),
temporal_size=base_num_frames,
grid_type="slice",
max_size=(grid_height, grid_width),
device=device,
)
return freqs_cos, freqs_sin
# Validation
@override
def prepare_for_validation(self):
# Load from dataset?
# Data_root
# - metadata.jsonl
# - video_latent / args.resolution /
# - prompt_embeddings /
# - first_frames /
# - flow_direct_f_latent /
data_root = self.args.data_root
metadata_path = data_root / "metadata_revised.jsonl"
assert metadata_path.is_file(), "For this dataset type, you need metadata.jsonl or metadata_revised.jsonl in the root path"
# Load metadata
# metadata = {
# "video_path": ...,
# "hash_code": ...,
# "prompt": ...,
# }
metadata = []
with open(metadata_path, "r") as f:
for line in f:
metadata.append( json.loads(line) )
metadata = random.sample(metadata, self.args.max_scene)
prompts = [x["prompt"] for x in metadata]
prompt_embeddings = [data_root / "prompt_embeddings_revised" / (x["hash_code"] + '.safetensors') for x in metadata]
videos = [data_root / "video_latent" / "x".join(str(x) for x in self.args.train_resolution) / (x["hash_code"] + '.safetensors') for x in metadata]
images = [data_root / "first_frames" / (x["hash_code"] + '.png') for x in metadata]
flows = [data_root / "flow_direct_f_latent" / (x["hash_code"] + '.safetensors') for x in metadata]
# load prompt embedding
validation_prompts = []
validation_prompt_embeddings = []
validation_video_latents = []
validation_images = []
validation_flow_latents = []
for prompt, prompt_embedding, video_latent, image, flow_latent in zip(prompts, prompt_embeddings, videos, images, flows):
validation_prompts.append(prompt)
validation_prompt_embeddings.append(load_file(prompt_embedding)["prompt_embedding"].unsqueeze(0))
validation_video_latents.append(load_file(video_latent)["encoded_video"].unsqueeze(0))
validation_flow_latents.append(load_file(flow_latent)["encoded_flow_f"].unsqueeze(0))
# validation_images.append(preprocess_image_with_resize(image, self.args.train_resolution[1], self.args.train_resolution[2]))
validation_images.append(image)
validation_videos = [None] * len(validation_prompts)
self.state.validation_prompts = validation_prompts
self.state.validation_prompt_embeddings = validation_prompt_embeddings
self.state.validation_images = validation_images
self.state.validation_videos = validation_videos
self.state.validation_video_latents = validation_video_latents
self.state.validation_flow_latents = validation_flow_latents
# Debug..
# self.validate(0)
@override
def validation_step(
self, eval_data: Dict[str, Any], pipe: FloVDCogVideoXControlnetImageToVideoPipeline
) -> List[Tuple[str, Image.Image | List[Image.Image]]]:
"""
Return the data that needs to be saved. For videos, the data format is List[PIL],
and for images, the data format is PIL
"""
prompt_embedding, image, flow_latent = eval_data["prompt_embedding"], eval_data["image"], eval_data["flow_latent"]
video_generate = pipe(
num_frames=self.state.train_frames,
height=self.state.train_height,
width=self.state.train_width,
prompt=None,
prompt_embeds=prompt_embedding,
image=image,
flow_latent=flow_latent,
generator=self.state.generator,
num_inference_steps=50,
controlnet_guidance_start = self.args.controlnet_guidance_start,
controlnet_guidance_end = self.args.controlnet_guidance_end,
).frames[0]
return [("synthesized_video", video_generate)]
@override
def validate(self, step: int) -> None:
#TODO. Fix the codes!!!!
logger.info("Starting validation")
accelerator = self.accelerator
num_validation_samples = len(self.state.validation_prompts)
if num_validation_samples == 0:
logger.warning("No validation samples found. Skipping validation.")
return
self.components.controlnet.eval()
torch.set_grad_enabled(False)
memory_statistics = get_memory_statistics()
logger.info(f"Memory before validation start: {json.dumps(memory_statistics, indent=4)}")
##### Initialize pipeline #####
pipe = self.initialize_pipeline()
camera_flow_generator = self.initialize_flow_generator(ckpt_path=self.args.depth_ckpt_path).to(device=self.accelerator.device, dtype=self.state.weight_dtype)
if self.state.using_deepspeed:
# Can't using model_cpu_offload in deepspeed,
# so we need to move all components in pipe to device
# pipe.to(self.accelerator.device, dtype=self.state.weight_dtype)
self.__move_components_to_device(dtype=self.state.weight_dtype, ignore_list=["controlnet"])
# self.__move_components_to_device(dtype=self.state.weight_dtype, ignore_list=["transformer", "controlnet"])
else:
# if not using deepspeed, use model_cpu_offload to further reduce memory usage
# Or use pipe.enable_sequential_cpu_offload() to further reduce memory usage
pipe.enable_model_cpu_offload(device=self.accelerator.device)
# Convert all model weights to training dtype
# Note, this will change LoRA weights in self.components.transformer to training dtype, rather than keep them in fp32
pipe = pipe.to(dtype=self.state.weight_dtype)
#################################
inference_type = ['training', 'inference']
# inference_type = ['inference']
for infer_type in inference_type:
all_processes_artifacts = []
for i in range(num_validation_samples):
if self.state.using_deepspeed and self.accelerator.deepspeed_plugin.zero_stage != 3:
# Skip current validation on all processes but one
if i % accelerator.num_processes != accelerator.process_index:
continue
prompt = self.state.validation_prompts[i]
image = self.state.validation_images[i]
video = self.state.validation_videos[i]
video_latent = self.state.validation_video_latents[i].permute(0,2,1,3,4) # [B,F,C,H,W] (e.g., [B, 13, 16, 60, 90])
prompt_embedding = self.state.validation_prompt_embeddings[i]
flow_latent = self.state.validation_flow_latents[i].permute(0,2,1,3,4) # [B,F,C,H,W] (e.g., [B, 13, 16, 60, 90])
if image is not None:
image = preprocess_image_with_resize(image, self.state.train_height, self.state.train_width)
image_torch = image.detach().clone()
# Convert image tensor (C, H, W) to PIL images
image = image.to(torch.uint8)
image = image.permute(1, 2, 0).cpu().numpy()
image = Image.fromarray(image)
if video is not None:
video = preprocess_video_with_resize(
video, self.state.train_frames, self.state.train_height, self.state.train_width
)
# Convert video tensor (F, C, H, W) to list of PIL images
video = video.round().clamp(0, 255).to(torch.uint8)
video = [Image.fromarray(frame.permute(1, 2, 0).cpu().numpy()) for frame in video]
else:
if infer_type == 'training':
with torch.cuda.amp.autocast(enabled=True, dtype=self.state.weight_dtype):
try:
video_decoded = decode_latents(video_latent.to(self.accelerator.device), self.components.vae)
except:
pass
video_decoded = decode_latents(video_latent.to(self.accelerator.device), self.components.vae)
video = ((video_decoded + 1.) / 2. * 255.)[0].permute(1,0,2,3).float().clip(0., 255.).to(torch.uint8)
video = [Image.fromarray(frame.permute(1, 2, 0).cpu().numpy()) for frame in video]
with torch.cuda.amp.autocast(enabled=True, dtype=self.state.weight_dtype):
try:
flow_decoded = decode_flow(flow_latent.to(self.accelerator.device), self.components.vae, flow_scale_factor=[60, 36])
except:
pass
flow_decoded = decode_flow(flow_latent.to(self.accelerator.device), self.components.vae, flow_scale_factor=[60, 36]) # (BF)CHW (C=2)
# Prepare camera flow
if infer_type == 'inference':
with torch.cuda.amp.autocast(enabled=True, dtype=self.state.weight_dtype):
camparam, cam_name = self.CameraSampler.sample()
camera_flow_generator_input = get_camera_flow_generator_input(image_torch, camparam, device=self.accelerator.device, speed=0.5)
image_torch = ((image_torch.unsqueeze(0) / 255.) * 2. - 1.).to(self.accelerator.device)
camera_flow, log_dict = camera_flow_generator(image_torch, camera_flow_generator_input)
camera_flow = camera_flow.to(self.accelerator.device)
# WTF, unknown bug. Need warm up inference.
try:
flow_latent = rearrange(encode_flow(camera_flow, self.components.vae, flow_scale_factor=[60, 36]), 'b c f h w -> b f c h w').to(self.accelerator.device, self.state.weight_dtype)
except:
pass
flow_latent = rearrange(encode_flow(camera_flow, self.components.vae, flow_scale_factor=[60, 36]), 'b c f h w -> b f c h w').to(self.accelerator.device, self.state.weight_dtype)
logger.debug(
f"Validating sample {i + 1}/{num_validation_samples} on process {accelerator.process_index}. Prompt: {prompt}",
main_process_only=False,
)
# validation_artifacts = self.validation_step({"prompt": prompt, "image": image, "video": video}, pipe)
validation_artifacts = self.validation_step({"prompt_embedding": prompt_embedding, "image": image, "flow_latent": flow_latent}, pipe)
if (
self.state.using_deepspeed
and self.accelerator.deepspeed_plugin.zero_stage == 3
and not accelerator.is_main_process
):
continue
prompt_filename = string_to_filename(prompt)[:25]
# Calculate hash of reversed prompt as a unique identifier
reversed_prompt = prompt[::-1]
hash_suffix = hashlib.md5(reversed_prompt.encode()).hexdigest()[:5]
artifacts = {
"image": {"type": "image", "value": image},
"video": {"type": "video", "value": video},
}
for i, (artifact_type, artifact_value) in enumerate(validation_artifacts):
artifacts.update({f"artifact_{i}": {"type": artifact_type, "value": artifact_value}})
if infer_type == 'training':
# Log flow_warped_frames
image_tensor = repeat(rearrange(torch.tensor(np.array(image)).to(flow_decoded.device, torch.float), 'h w c -> 1 c h w'), 'b c h w -> (b f) c h w', f=flow_decoded.size(0)) # scale~(0,255) (BF) C H W
warped_video = forward_bilinear_splatting(image_tensor, flow_decoded.to(torch.float)) # if we have an occlusion mask from dataset, we can use it.
frame_list = []
for frame in warped_video:
frame = (frame.permute(1,2,0).float().detach().cpu().numpy()).astype(np.uint8).clip(0,255)
frame_list.append(Image.fromarray(frame))
artifacts.update({f"artifact_warped_video_{i}": {"type": 'warped_video', "value": frame_list}})
if infer_type == 'inference':
warped_video = log_dict['depth_warped_frames']
frame_list = []
for frame in warped_video:
frame = (frame + 1.)/2. * 255.
frame = (frame.permute(1,2,0).float().detach().cpu().numpy()).astype(np.uint8).clip(0,255)
frame_list.append(Image.fromarray(frame))
artifacts.update({f"artifact_warped_video_{i}": {"type": 'warped_video', "value": frame_list}})
logger.debug(
f"Validation artifacts on process {accelerator.process_index}: {list(artifacts.keys())}",
main_process_only=False,
)
for key, value in list(artifacts.items()):
artifact_type = value["type"]
artifact_value = value["value"]
if artifact_type not in ["image", "video", "warped_video", "synthesized_video"] or artifact_value is None:
continue
extension = "png" if artifact_type == "image" else "mp4"
if artifact_type == "warped_video":
filename = f"validation-{step}-{accelerator.process_index}-{prompt_filename}-{hash_suffix}-{infer_type}_warped_video.{extension}"
elif artifact_type == "synthesized_video":
filename = f"validation-{step}-{accelerator.process_index}-{prompt_filename}-{hash_suffix}-{infer_type}_synthesized_video.{extension}"
else:
filename = f"validation-{step}-{accelerator.process_index}-{prompt_filename}-{hash_suffix}-{infer_type}.{extension}"
validation_path = self.args.output_dir / "validation_res"
validation_path.mkdir(parents=True, exist_ok=True)
filename = str(validation_path / filename)
if artifact_type == "image":
logger.debug(f"Saving image to {filename}")
artifact_value.save(filename)
artifact_value = wandb.Image(filename)
elif artifact_type == "video" or artifact_type == "warped_video" or artifact_type == "synthesized_video":
logger.debug(f"Saving video to {filename}")
export_to_video(artifact_value, filename, fps=self.args.gen_fps)
artifact_value = wandb.Video(filename, caption=prompt)
all_processes_artifacts.append(artifact_value)
all_artifacts = gather_object(all_processes_artifacts)
if accelerator.is_main_process:
tracker_key = "validation"
for tracker in accelerator.trackers:
if tracker.name == "wandb":
image_artifacts = [artifact for artifact in all_artifacts if isinstance(artifact, wandb.Image)]
video_artifacts = [artifact for artifact in all_artifacts if isinstance(artifact, wandb.Video)]
tracker.log(
{
tracker_key: {f"images_{infer_type}": image_artifacts, f"videos_{infer_type}": video_artifacts},
},
step=step,
)
########## Clean up ##########
if self.state.using_deepspeed:
del pipe
# Unload models except those needed for training
self.__move_components_to_cpu(unload_list=self.UNLOAD_LIST)
else:
pipe.remove_all_hooks()
del pipe
# Load models except those not needed for training
self.__move_components_to_device(dtype=self.state.weight_dtype, ignore_list=self.UNLOAD_LIST)
self.components.controlnet.to(self.accelerator.device, dtype=self.state.weight_dtype)
# Change trainable weights back to fp32 to keep with dtype after prepare the model
cast_training_params([self.components.controlnet], dtype=torch.float32)
del camera_flow_generator
free_memory()
accelerator.wait_for_everyone()
################################
memory_statistics = get_memory_statistics()
logger.info(f"Memory after validation end: {json.dumps(memory_statistics, indent=4)}")
torch.cuda.reset_peak_memory_stats(accelerator.device)
torch.set_grad_enabled(True)
self.components.controlnet.train()
# mangling
def __move_components_to_device(self, dtype, ignore_list: List[str] = []):
ignore_list = set(ignore_list)
components = self.components.model_dump()
for name, component in components.items():
if not isinstance(component, type) and hasattr(component, "to"):
if name not in ignore_list:
setattr(self.components, name, component.to(self.accelerator.device, dtype=dtype))
# mangling
def __move_components_to_cpu(self, unload_list: List[str] = []):
unload_list = set(unload_list)
components = self.components.model_dump()
for name, component in components.items():
if not isinstance(component, type) and hasattr(component, "to"):
if name in unload_list:
setattr(self.components, name, component.to("cpu"))
register("cogvideox-flovd", "controlnet", FloVDCogVideoXI2VControlnetTrainer)
#--------------------------------------------------------------------------------------------------
# Extract function
def encode_text(prompt: str, components, device) -> torch.Tensor:
prompt_token_ids = components.tokenizer(
prompt,
padding="max_length",
max_length=components.transformer.config.max_text_seq_length,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
prompt_token_ids = prompt_token_ids.input_ids
prompt_embedding = components.text_encoder(prompt_token_ids.to(device))[0]
return prompt_embedding
def encode_video(video: torch.Tensor, vae) -> torch.Tensor:
# shape of input video: [B, C, F, H, W]
video = video.to(vae.device, dtype=vae.dtype)
latent_dist = vae.encode(video).latent_dist
latent = latent_dist.sample() * vae.config.scaling_factor
return latent
def decode_latents(latents: torch.Tensor, vae) -> torch.Tensor:
latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width]
latents = 1 / vae.config.scaling_factor * latents
frames = vae.decode(latents).sample
return frames
def compute_optical_flow(raft, ctxt, trgt, raft_iter=20, chunk=2, only_forward=True):
num_frames = ctxt.shape[0]
chunk_size = (num_frames // chunk) + 1
flow_f_list = []
if not only_forward:
flow_b_list = []
for i in range(chunk):
start = chunk_size * i
end = chunk_size * (i+1)
with torch.no_grad():
flow_f = raft(ctxt[start:end], trgt[start:end], num_flow_updates=raft_iter)[-1]
if not only_forward:
flow_b = raft(trgt[start:end], ctxt[start:end], num_flow_updates=raft_iter)[-1]
flow_f_list.append(flow_f)
if not only_forward:
flow_b_list.append(flow_b)
flow_f = torch.cat(flow_f_list)
if not only_forward:
flow_b = torch.cat(flow_b_list)
if not only_forward:
return flow_f, flow_b
else:
return flow_f, None
def encode_flow(flow, vae, flow_scale_factor):
# flow: BF,C,H,W
# flow_scale_factor [sf_x, sf_y]
assert flow.ndim == 4
num_frames, _, height, width = flow.shape
# Normalize optical flow
# ndim: 4 -> 5
flow = rearrange(flow, '(b f) c h w -> b f c h w', b=1)
flow_norm = adaptive_normalize(flow, flow_scale_factor[0], flow_scale_factor[1])
# ndim: 5 -> 4
flow_norm = rearrange(flow_norm, 'b f c h w -> (b f) c h w', b=1)
# Duplicate mean value for third channel
num_frames, _, H, W = flow_norm.shape
flow_norm_extended = torch.empty((num_frames, 3, height, width)).to(flow_norm)
flow_norm_extended[:,:2] = flow_norm
flow_norm_extended[:,-1:] = flow_norm.mean(dim=1, keepdim=True)
flow_norm_extended = rearrange(flow_norm_extended, '(b f) c h w -> b c f h w', f=num_frames)
return encode_video(flow_norm_extended, vae)
def decode_flow(flow_latent, vae, flow_scale_factor):
flow_latent = flow_latent.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width]
flow_latent = 1 / vae.config.scaling_factor * flow_latent
flow = vae.decode(flow_latent).sample # BCFHW
# discard third channel (which is a mean value of f_x and f_y)
flow = flow[:,:2].detach().clone()
# Unnormalize optical flow
flow = rearrange(flow, 'b c f h w -> b f c h w')
flow = adaptive_unnormalize(flow, flow_scale_factor[0], flow_scale_factor[1])
flow = rearrange(flow, 'b f c h w -> (b f) c h w')
return flow # BF,C,H,W
def adaptive_normalize(flow, sf_x, sf_y):
# x: BFCHW, optical flow
assert flow.ndim == 5, 'Set the shape of the flow input as (B, F, C, H, W)'
assert sf_x is not None and sf_y is not None
b, f, c, h, w = flow.shape
max_clip_x = math.sqrt(w/sf_x) * 1.0
max_clip_y = math.sqrt(h/sf_y) * 1.0
flow_norm = flow.detach().clone()
flow_x = flow[:, :, 0].detach().clone()
flow_y = flow[:, :, 1].detach().clone()
flow_x_norm = torch.sign(flow_x) * torch.sqrt(torch.abs(flow_x)/sf_x + 1e-7)
flow_y_norm = torch.sign(flow_y) * torch.sqrt(torch.abs(flow_y)/sf_y + 1e-7)
flow_norm[:, :, 0] = torch.clamp(flow_x_norm, min=-max_clip_x, max=max_clip_x)
flow_norm[:, :, 1] = torch.clamp(flow_y_norm, min=-max_clip_y, max=max_clip_y)
return flow_norm
def adaptive_unnormalize(flow, sf_x, sf_y):
# x: BFCHW, optical flow
assert flow.ndim == 5, 'Set the shape of the flow input as (B, F, C, H, W)'
assert sf_x is not None and sf_y is not None
flow_orig = flow.detach().clone()
flow_x = flow[:, :, 0].detach().clone()
flow_y = flow[:, :, 1].detach().clone()
flow_orig[:, :, 0] = torch.sign(flow_x) * sf_x * (flow_x**2 - 1e-7)
flow_orig[:, :, 1] = torch.sign(flow_y) * sf_y * (flow_y**2 - 1e-7)
return flow_orig
#--------------------------------------------------------------------------------------------------