Spaces:
Paused
Paused
# Shree KRISHNAya Namaha | |
# Differentiable warper implemented in PyTorch. Warping is done on batches. | |
# Tested on PyTorch 1.8.1 | |
# Author: Nagabhushan S N | |
# Last Modified: 27/09/2021 | |
# Code from https://github.com/NagabhushanSN95/Pose-Warping | |
import datetime | |
import time | |
import traceback | |
from pathlib import Path | |
from typing import Tuple, Optional | |
import numpy | |
# import skimage.io | |
import torch | |
import torch.nn.functional as F | |
from einops import rearrange, repeat | |
# import Imath | |
# import OpenEXR | |
import pdb | |
class Warper: | |
def __init__(self, resolution: tuple = None): | |
self.resolution = resolution | |
def forward_warp(self, frame1: torch.Tensor, mask1: Optional[torch.Tensor], depth1: torch.Tensor, | |
transformation1: torch.Tensor, transformation2: torch.Tensor, intrinsic1: torch.Tensor, | |
intrinsic2: Optional[torch.Tensor], is_image=True) -> \ | |
Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
""" | |
Given a frame1 and global transformations transformation1 and transformation2, warps frame1 to next view using | |
bilinear splatting. | |
All arrays should be torch tensors with batch dimension and channel first | |
:param frame1: (b, 3, h, w). If frame1 is not in the range [-1, 1], either set is_image=False when calling | |
bilinear_splatting on frame within this function, or modify clipping in bilinear_splatting() | |
method accordingly. | |
:param mask1: (b, 1, h, w) - 1 for known, 0 for unknown. Optional | |
:param depth1: (b, 1, h, w) | |
:param transformation1: (b, 4, 4) extrinsic transformation matrix of first view: [R, t; 0, 1] | |
:param transformation2: (b, 4, 4) extrinsic transformation matrix of second view: [R, t; 0, 1] | |
:param intrinsic1: (b, 3, 3) camera intrinsic matrix | |
:param intrinsic2: (b, 3, 3) camera intrinsic matrix. Optional | |
""" | |
self.device = frame1.device | |
if self.resolution is not None: | |
assert frame1.shape[2:4] == self.resolution | |
b, c, h, w = frame1.shape | |
if mask1 is None: | |
mask1 = torch.ones(size=(b, 1, h, w)).to(frame1) | |
if intrinsic2 is None: | |
intrinsic2 = intrinsic1.clone() | |
assert frame1.shape == (b, 3, h, w) or frame1.shape == (b, 2, h, w) # flow b2hw | |
assert mask1.shape == (b, 1, h, w) | |
assert depth1.shape == (b, 1, h, w) | |
assert transformation1.shape == (b, 4, 4) | |
assert transformation2.shape == (b, 4, 4) | |
assert intrinsic1.shape == (b, 3, 3) | |
assert intrinsic2.shape == (b, 3, 3) | |
frame1 = frame1.to(self.device) | |
mask1 = mask1.to(self.device) | |
depth1 = depth1.to(self.device) | |
transformation1 = transformation1.to(self.device) | |
transformation2 = transformation2.to(self.device) | |
intrinsic1 = intrinsic1.to(self.device) | |
intrinsic2 = intrinsic2.to(self.device) | |
trans_points1 = self.compute_transformed_points(depth1, transformation1, transformation2, intrinsic1, | |
intrinsic2) | |
# trans_coordinates = trans_points1[:, :, :2, 0] / trans_points1[:, :, 2:3, 0] | |
trans_coordinates = trans_points1[:, :, :, :2, 0] / (trans_points1[:, :, :, 2:3, 0]+1e-7) | |
trans_depth1 = rearrange(trans_points1[:, :, :, 2:3, 0], "b h w c -> b c h w") | |
grid = self.create_grid(b, h, w).to(trans_coordinates) | |
flow12 = rearrange(trans_coordinates, "b h w c -> b c h w") - grid | |
warped_frame2, mask2 = self.bilinear_splatting(frame1, mask1, trans_depth1, flow12, None, is_image=is_image) | |
warped_depth2 = self.bilinear_splatting(trans_depth1, mask1, trans_depth1, flow12, None, is_image=False)[0] # [0][:, :, 0] | |
return warped_frame2, mask2, warped_depth2, flow12 | |
def forward_warp_displacement(self, depth1: torch.Tensor, flow1: torch.Tensor, | |
transformation1: torch.Tensor, transformation2: torch.Tensor, intrinsic1: torch.Tensor, intrinsic2: Optional[torch.Tensor],): | |
""" | |
Given a frame1 and global transformations transformation1 and transformation2, warps frame1 to next view using | |
bilinear splatting. | |
All arrays should be torch tensors with batch dimension and channel first | |
:param depth1: (b, 1, h, w) | |
:param flow1: (b, 2, h, w) | |
:param transformation1: (b, 4, 4) extrinsic transformation matrix of first view: [R, t; 0, 1] | |
:param transformation2: (b, 4, 4) extrinsic transformation matrix of second view: [R, t; 0, 1] | |
:param intrinsic1: (b, 3, 3) camera intrinsic matrix | |
:param intrinsic2: (b, 3, 3) camera intrinsic matrix. Optional | |
""" | |
self.device = flow1.device | |
if self.resolution is not None: | |
assert flow1.shape[2:4] == self.resolution | |
b, c, h, w = flow1.shape | |
if intrinsic2 is None: | |
intrinsic2 = intrinsic1.clone() | |
assert flow1.shape == (b, 2, h, w) | |
assert depth1.shape == (b, 1, h, w) | |
assert transformation1.shape == (b, 4, 4) | |
assert transformation2.shape == (b, 4, 4) | |
assert intrinsic1.shape == (b, 3, 3) | |
assert intrinsic2.shape == (b, 3, 3) | |
depth1 = depth1.to(self.device) | |
flow1 = flow1.to(self.device) | |
transformation1 = transformation1.to(self.device) | |
transformation2 = transformation2.to(self.device) | |
intrinsic1 = intrinsic1.to(self.device) | |
intrinsic2 = intrinsic2.to(self.device) | |
trans_points1 = self.compute_transformed_points(depth1, transformation1, transformation2, intrinsic1, intrinsic2) | |
trans_coordinates1 = trans_points1[:, :, :, :2, 0] / (trans_points1[:, :, :, 2:3, 0]+1e-7) | |
trans_points2 = self.compute_transformed_points(depth1, transformation1, transformation2, intrinsic1, intrinsic2, flow1) | |
trans_coordinates2 = trans_points2[:, :, :, :2, 0] / (trans_points2[:, :, :, 2:3, 0]+1e-7) | |
flow12_displacement = rearrange(trans_coordinates2 - trans_coordinates1, "b h w c -> b c h w") | |
return flow12_displacement | |
def compute_transformed_points(self, depth1: torch.Tensor, transformation1: torch.Tensor, transformation2: torch.Tensor, | |
intrinsic1: torch.Tensor, intrinsic2: Optional[torch.Tensor], flow1: Optional[torch.Tensor]=None): | |
""" | |
Computes transformed position for each pixel location | |
""" | |
if self.resolution is not None: | |
assert depth1.shape[2:4] == self.resolution | |
b, _, h, w = depth1.shape | |
if intrinsic2 is None: | |
intrinsic2 = intrinsic1.clone() | |
transformation = torch.bmm(transformation2, torch.linalg.inv(transformation1)).to(transformation1.dtype) # (b, 4, 4) | |
x1d = torch.arange(0, w)[None] | |
y1d = torch.arange(0, h)[:, None] | |
x2d = x1d.repeat([h, 1]).to(depth1) # (h, w) | |
y2d = y1d.repeat([1, w]).to(depth1) # (h, w) | |
ones_2d = torch.ones(size=(h, w)).to(depth1) # (h, w) | |
ones_4d = ones_2d[None, :, :, None, None].repeat([b, 1, 1, 1, 1]) # (b, h, w, 1, 1) | |
if flow1 is not None: | |
x4d = repeat(x2d[None, :, :, None], '1 h w c -> b h w c', b=b) | |
y4d = repeat(y2d[None, :, :, None], '1 h w c -> b h w c', b=b) | |
flow1_x4d = rearrange(flow1[:,:1].detach().clone(), "b c h w -> b h w c") | |
flow1_y4d = rearrange(flow1[:,1:].detach().clone(), "b c h w -> b h w c") | |
x4d = x4d + flow1_x4d | |
y4d = y4d + flow1_y4d | |
pos_vectors_homo = torch.stack([x4d, y4d, ones_4d.squeeze(-1)], dim=3) # (b, h, w, 3, 1) | |
else: | |
pos_vectors_homo = torch.stack([x2d, y2d, ones_2d], dim=2)[None, :, :, :, None] # (1, h, w, 3, 1) | |
intrinsic1_inv = torch.linalg.inv(intrinsic1) # (b, 3, 3) | |
intrinsic1_inv_4d = intrinsic1_inv[:, None, None] # (b, 1, 1, 3, 3) | |
intrinsic2_4d = intrinsic2[:, None, None] # (b, 1, 1, 3, 3) | |
depth_4d = depth1[:, 0][:, :, :, None, None] # (b, h, w, 1, 1) | |
trans_4d = transformation[:, None, None] # (b, 1, 1, 4, 4) | |
unnormalized_pos = torch.matmul(intrinsic1_inv_4d, pos_vectors_homo).to(transformation1.dtype) # (b, h, w, 3, 1) | |
world_points = depth_4d * unnormalized_pos # (b, h, w, 3, 1) | |
world_points_homo = torch.cat([world_points, ones_4d], dim=3) # (b, h, w, 4, 1) | |
trans_world_homo = torch.matmul(trans_4d, world_points_homo).to(transformation1.dtype) # (b, h, w, 4, 1) | |
trans_world = trans_world_homo[:, :, :, :3] # (b, h, w, 3, 1) | |
trans_norm_points = torch.matmul(intrinsic2_4d, trans_world).to(transformation1.dtype) # (b, h, w, 3, 1) | |
return trans_norm_points | |
def bilinear_splatting(self, frame1: torch.Tensor, mask1: Optional[torch.Tensor], depth1: torch.Tensor, | |
flow12: torch.Tensor, flow12_mask: Optional[torch.Tensor], is_image: bool = False) -> \ | |
Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Bilinear splatting | |
:param frame1: (b,c,h,w) | |
:param mask1: (b,1,h,w): 1 for known, 0 for unknown. Optional | |
:param depth1: (b,1,h,w) | |
:param flow12: (b,2,h,w) | |
:param flow12_mask: (b,1,h,w): 1 for valid flow, 0 for invalid flow. Optional | |
:param is_image: if true, output will be clipped to (-1,1) range | |
:return: warped_frame2: (b,c,h,w) | |
mask2: (b,1,h,w): 1 for known and 0 for unknown | |
""" | |
if self.resolution is not None: | |
assert frame1.shape[2:4] == self.resolution | |
b, c, h, w = frame1.shape | |
if mask1 is None: | |
mask1 = torch.ones(size=(b, 1, h, w)).to(frame1) | |
if flow12_mask is None: | |
flow12_mask = torch.ones(size=(b, 1, h, w)).to(flow12) | |
grid = self.create_grid(b, h, w).to(frame1) | |
trans_pos = flow12 + grid | |
trans_pos_offset = trans_pos + 1 | |
trans_pos_floor = torch.floor(trans_pos_offset).long() | |
trans_pos_ceil = torch.ceil(trans_pos_offset).long() | |
trans_pos_offset = torch.stack([ | |
torch.clamp(trans_pos_offset[:, 0], min=0, max=w + 1), | |
torch.clamp(trans_pos_offset[:, 1], min=0, max=h + 1)], dim=1) | |
trans_pos_floor = torch.stack([ | |
torch.clamp(trans_pos_floor[:, 0], min=0, max=w + 1), | |
torch.clamp(trans_pos_floor[:, 1], min=0, max=h + 1)], dim=1) | |
trans_pos_ceil = torch.stack([ | |
torch.clamp(trans_pos_ceil[:, 0], min=0, max=w + 1), | |
torch.clamp(trans_pos_ceil[:, 1], min=0, max=h + 1)], dim=1) | |
prox_weight_nw = (1 - (trans_pos_offset[:, 1:2] - trans_pos_floor[:, 1:2])) * \ | |
(1 - (trans_pos_offset[:, 0:1] - trans_pos_floor[:, 0:1])) | |
prox_weight_sw = (1 - (trans_pos_ceil[:, 1:2] - trans_pos_offset[:, 1:2])) * \ | |
(1 - (trans_pos_offset[:, 0:1] - trans_pos_floor[:, 0:1])) | |
prox_weight_ne = (1 - (trans_pos_offset[:, 1:2] - trans_pos_floor[:, 1:2])) * \ | |
(1 - (trans_pos_ceil[:, 0:1] - trans_pos_offset[:, 0:1])) | |
prox_weight_se = (1 - (trans_pos_ceil[:, 1:2] - trans_pos_offset[:, 1:2])) * \ | |
(1 - (trans_pos_ceil[:, 0:1] - trans_pos_offset[:, 0:1])) | |
sat_depth1 = torch.clamp(depth1, min=0, max=1000) | |
log_depth1 = torch.log(1 + sat_depth1) | |
depth_weights = torch.exp(log_depth1 / log_depth1.max() * 50) | |
weight_nw = torch.moveaxis(prox_weight_nw * mask1 * flow12_mask / depth_weights, [0, 1, 2, 3], [0, 3, 1, 2]) | |
weight_sw = torch.moveaxis(prox_weight_sw * mask1 * flow12_mask / depth_weights, [0, 1, 2, 3], [0, 3, 1, 2]) | |
weight_ne = torch.moveaxis(prox_weight_ne * mask1 * flow12_mask / depth_weights, [0, 1, 2, 3], [0, 3, 1, 2]) | |
weight_se = torch.moveaxis(prox_weight_se * mask1 * flow12_mask / depth_weights, [0, 1, 2, 3], [0, 3, 1, 2]) | |
warped_frame = torch.zeros(size=(b, h + 2, w + 2, c), dtype=torch.float32).to(frame1) | |
warped_weights = torch.zeros(size=(b, h + 2, w + 2, 1), dtype=torch.float32).to(frame1) | |
frame1_cl = torch.moveaxis(frame1, [0, 1, 2, 3], [0, 3, 1, 2]) | |
batch_indices = torch.arange(b)[:, None, None].to(frame1.device) | |
warped_frame.index_put_((batch_indices, trans_pos_floor[:, 1], trans_pos_floor[:, 0]), | |
frame1_cl * weight_nw, accumulate=True) | |
warped_frame.index_put_((batch_indices, trans_pos_ceil[:, 1], trans_pos_floor[:, 0]), | |
frame1_cl * weight_sw, accumulate=True) | |
warped_frame.index_put_((batch_indices, trans_pos_floor[:, 1], trans_pos_ceil[:, 0]), | |
frame1_cl * weight_ne, accumulate=True) | |
warped_frame.index_put_((batch_indices, trans_pos_ceil[:, 1], trans_pos_ceil[:, 0]), | |
frame1_cl * weight_se, accumulate=True) | |
warped_weights.index_put_((batch_indices, trans_pos_floor[:, 1], trans_pos_floor[:, 0]), | |
weight_nw, accumulate=True) | |
warped_weights.index_put_((batch_indices, trans_pos_ceil[:, 1], trans_pos_floor[:, 0]), | |
weight_sw, accumulate=True) | |
warped_weights.index_put_((batch_indices, trans_pos_floor[:, 1], trans_pos_ceil[:, 0]), | |
weight_ne, accumulate=True) | |
warped_weights.index_put_((batch_indices, trans_pos_ceil[:, 1], trans_pos_ceil[:, 0]), | |
weight_se, accumulate=True) | |
warped_frame_cf = torch.moveaxis(warped_frame, [0, 1, 2, 3], [0, 2, 3, 1]) | |
warped_weights_cf = torch.moveaxis(warped_weights, [0, 1, 2, 3], [0, 2, 3, 1]) | |
cropped_warped_frame = warped_frame_cf[:, :, 1:-1, 1:-1] | |
cropped_weights = warped_weights_cf[:, :, 1:-1, 1:-1] | |
mask = cropped_weights > 0 | |
zero_value = -1 if is_image else 0 | |
zero_tensor = torch.tensor(zero_value, dtype=frame1.dtype, device=frame1.device) | |
warped_frame2 = torch.where(mask, cropped_warped_frame / cropped_weights, zero_tensor) | |
mask2 = mask.to(frame1) | |
if is_image: | |
assert warped_frame2.min() >= -1.1 # Allow for rounding errors | |
assert warped_frame2.max() <= 1.1 | |
warped_frame2 = torch.clamp(warped_frame2, min=-1, max=1) | |
return warped_frame2, mask2 | |
def bilinear_interpolation(self, frame2: torch.Tensor, mask2: Optional[torch.Tensor], flow12: torch.Tensor, | |
flow12_mask: Optional[torch.Tensor], is_image: bool = False) -> \ | |
Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Bilinear interpolation | |
:param frame2: (b, c, h, w) | |
:param mask2: (b, 1, h, w): 1 for known, 0 for unknown. Optional | |
:param flow12: (b, 2, h, w) | |
:param flow12_mask: (b, 1, h, w): 1 for valid flow, 0 for invalid flow. Optional | |
:param is_image: if true, output will be clipped to (-1,1) range | |
:return: warped_frame1: (b, c, h, w) | |
mask1: (b, 1, h, w): 1 for known and 0 for unknown | |
""" | |
if self.resolution is not None: | |
assert frame2.shape[2:4] == self.resolution | |
b, c, h, w = frame2.shape | |
if mask2 is None: | |
mask2 = torch.ones(size=(b, 1, h, w)).to(frame2) | |
if flow12_mask is None: | |
flow12_mask = torch.ones(size=(b, 1, h, w)).to(flow12) | |
grid = self.create_grid(b, h, w).to(frame2) | |
trans_pos = flow12 + grid | |
trans_pos_offset = trans_pos + 1 | |
trans_pos_floor = torch.floor(trans_pos_offset).long() | |
trans_pos_ceil = torch.ceil(trans_pos_offset).long() | |
trans_pos_offset = torch.stack([ | |
torch.clamp(trans_pos_offset[:, 0], min=0, max=w + 1), | |
torch.clamp(trans_pos_offset[:, 1], min=0, max=h + 1)], dim=1) | |
trans_pos_floor = torch.stack([ | |
torch.clamp(trans_pos_floor[:, 0], min=0, max=w + 1), | |
torch.clamp(trans_pos_floor[:, 1], min=0, max=h + 1)], dim=1) | |
trans_pos_ceil = torch.stack([ | |
torch.clamp(trans_pos_ceil[:, 0], min=0, max=w + 1), | |
torch.clamp(trans_pos_ceil[:, 1], min=0, max=h + 1)], dim=1) | |
prox_weight_nw = (1 - (trans_pos_offset[:, 1:2] - trans_pos_floor[:, 1:2])) * \ | |
(1 - (trans_pos_offset[:, 0:1] - trans_pos_floor[:, 0:1])) | |
prox_weight_sw = (1 - (trans_pos_ceil[:, 1:2] - trans_pos_offset[:, 1:2])) * \ | |
(1 - (trans_pos_offset[:, 0:1] - trans_pos_floor[:, 0:1])) | |
prox_weight_ne = (1 - (trans_pos_offset[:, 1:2] - trans_pos_floor[:, 1:2])) * \ | |
(1 - (trans_pos_ceil[:, 0:1] - trans_pos_offset[:, 0:1])) | |
prox_weight_se = (1 - (trans_pos_ceil[:, 1:2] - trans_pos_offset[:, 1:2])) * \ | |
(1 - (trans_pos_ceil[:, 0:1] - trans_pos_offset[:, 0:1])) | |
weight_nw = torch.moveaxis(prox_weight_nw * flow12_mask, [0, 1, 2, 3], [0, 3, 1, 2]) | |
weight_sw = torch.moveaxis(prox_weight_sw * flow12_mask, [0, 1, 2, 3], [0, 3, 1, 2]) | |
weight_ne = torch.moveaxis(prox_weight_ne * flow12_mask, [0, 1, 2, 3], [0, 3, 1, 2]) | |
weight_se = torch.moveaxis(prox_weight_se * flow12_mask, [0, 1, 2, 3], [0, 3, 1, 2]) | |
frame2_offset = F.pad(frame2, [1, 1, 1, 1]) | |
mask2_offset = F.pad(mask2, [1, 1, 1, 1]) | |
bi = torch.arange(b)[:, None, None] | |
f2_nw = frame2_offset[bi, :, trans_pos_floor[:, 1], trans_pos_floor[:, 0]] | |
f2_sw = frame2_offset[bi, :, trans_pos_ceil[:, 1], trans_pos_floor[:, 0]] | |
f2_ne = frame2_offset[bi, :, trans_pos_floor[:, 1], trans_pos_ceil[:, 0]] | |
f2_se = frame2_offset[bi, :, trans_pos_ceil[:, 1], trans_pos_ceil[:, 0]] | |
m2_nw = mask2_offset[bi, :, trans_pos_floor[:, 1], trans_pos_floor[:, 0]] | |
m2_sw = mask2_offset[bi, :, trans_pos_ceil[:, 1], trans_pos_floor[:, 0]] | |
m2_ne = mask2_offset[bi, :, trans_pos_floor[:, 1], trans_pos_ceil[:, 0]] | |
m2_se = mask2_offset[bi, :, trans_pos_ceil[:, 1], trans_pos_ceil[:, 0]] | |
nr = weight_nw * f2_nw * m2_nw + weight_sw * f2_sw * m2_sw + \ | |
weight_ne * f2_ne * m2_ne + weight_se * f2_se * m2_se | |
dr = weight_nw * m2_nw + weight_sw * m2_sw + weight_ne * m2_ne + weight_se * m2_se | |
zero_value = -1 if is_image else 0 | |
zero_tensor = torch.tensor(zero_value, dtype=nr.dtype, device=nr.device) | |
warped_frame1 = torch.where(dr > 0, nr / dr, zero_tensor) | |
mask1 = (dr > 0).to(frame2) | |
# Convert to channel first | |
warped_frame1 = torch.moveaxis(warped_frame1, [0, 1, 2, 3], [0, 2, 3, 1]) | |
mask1 = torch.moveaxis(mask1, [0, 1, 2, 3], [0, 2, 3, 1]) | |
if is_image: | |
assert warped_frame1.min() >= -1.1 # Allow for rounding errors | |
assert warped_frame1.max() <= 1.1 | |
warped_frame1 = torch.clamp(warped_frame1, min=-1, max=1) | |
return warped_frame1, mask1 | |
def create_grid(b, h, w): | |
x_1d = torch.arange(0, w)[None] | |
y_1d = torch.arange(0, h)[:, None] | |
x_2d = x_1d.repeat([h, 1]) | |
y_2d = y_1d.repeat([1, w]) | |
grid = torch.stack([x_2d, y_2d], dim=0) | |
batch_grid = grid[None].repeat([b, 1, 1, 1]) | |
return batch_grid | |
# @staticmethod | |
# def read_image(path: Path) -> torch.Tensor: | |
# image = skimage.io.imread(path.as_posix()) | |
# return image | |
# @staticmethod | |
# def read_depth(path: Path) -> torch.Tensor: | |
# if path.suffix == '.png': | |
# depth = skimage.io.imread(path.as_posix()) | |
# elif path.suffix == '.npy': | |
# depth = numpy.load(path.as_posix()) | |
# elif path.suffix == '.npz': | |
# with numpy.load(path.as_posix()) as depth_data: | |
# depth = depth_data['depth'] | |
# elif path.suffix == '.exr': | |
# exr_file = OpenEXR.InputFile(path.as_posix()) | |
# raw_bytes = exr_file.channel('B', Imath.PixelType(Imath.PixelType.FLOAT)) | |
# depth_vector = numpy.frombuffer(raw_bytes, dtype=numpy.float32) | |
# height = exr_file.header()['displayWindow'].max.y + 1 - exr_file.header()['displayWindow'].min.y | |
# width = exr_file.header()['displayWindow'].max.x + 1 - exr_file.header()['displayWindow'].min.x | |
# depth = numpy.reshape(depth_vector, (height, width)) | |
# else: | |
# raise RuntimeError(f'Unknown depth format: {path.suffix}') | |
# return depth | |
# @staticmethod | |
# def camera_intrinsic_transform(capture_width=1920, capture_height=1080, patch_start_point: tuple = (0, 0)): | |
# start_y, start_x = patch_start_point | |
# camera_intrinsics = numpy.eye(4) | |
# camera_intrinsics[0, 0] = 2100 | |
# camera_intrinsics[0, 2] = capture_width / 2.0 - start_x | |
# camera_intrinsics[1, 1] = 2100 | |
# camera_intrinsics[1, 2] = capture_height / 2.0 - start_y | |
# return camera_intrinsics | |
# @staticmethod | |
# def get_device(device: str): | |
# """ | |
# Returns torch device object | |
# :param device: cpu/gpu0/gpu1 | |
# :return: | |
# """ | |
# if device == 'cpu': | |
# device = torch.device('cpu') | |
# elif device.startswith('gpu') and torch.cuda.is_available(): | |
# gpu_num = int(device[3:]) | |
# device = torch.device(f'cuda:{gpu_num}') | |
# else: | |
# device = torch.device('cpu') | |
# return device |