Spaces:
Paused
Paused
# Prediction interface for Cog ⚙️ | |
# https://cog.run/python | |
import os | |
import subprocess | |
import time | |
import torch | |
from diffusers import CogVideoXPipeline | |
from diffusers.utils import export_to_video | |
from cog import BasePredictor, Input, Path | |
MODEL_CACHE = "model_cache" | |
MODEL_URL = ( | |
f"https://weights.replicate.delivery/default/THUDM/CogVideo/{MODEL_CACHE}.tar" | |
) | |
os.environ["HF_DATASETS_OFFLINE"] = "1" | |
os.environ["TRANSFORMERS_OFFLINE"] = "1" | |
os.environ["HF_HOME"] = MODEL_CACHE | |
os.environ["TORCH_HOME"] = MODEL_CACHE | |
os.environ["HF_DATASETS_CACHE"] = MODEL_CACHE | |
os.environ["TRANSFORMERS_CACHE"] = MODEL_CACHE | |
os.environ["HUGGINGFACE_HUB_CACHE"] = MODEL_CACHE | |
def download_weights(url, dest): | |
start = time.time() | |
print("downloading url: ", url) | |
print("downloading to: ", dest) | |
subprocess.check_call(["pget", "-x", url, dest], close_fds=False) | |
print("downloading took: ", time.time() - start) | |
class Predictor(BasePredictor): | |
def setup(self) -> None: | |
"""Load the model into memory to make running multiple predictions efficient""" | |
if not os.path.exists(MODEL_CACHE): | |
download_weights(MODEL_URL, MODEL_CACHE) | |
# model_id: THUDM/CogVideoX-5b | |
self.pipe = CogVideoXPipeline.from_pretrained( | |
MODEL_CACHE, | |
torch_dtype=torch.bfloat16, | |
).to("cuda") | |
self.pipe.enable_model_cpu_offload() | |
self.pipe.vae.enable_tiling() | |
def predict( | |
self, | |
prompt: str = Input( | |
description="Input prompt", | |
default="A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance.", | |
), | |
num_inference_steps: int = Input( | |
description="Number of denoising steps", ge=1, le=500, default=50 | |
), | |
guidance_scale: float = Input( | |
description="Scale for classifier-free guidance", ge=1, le=20, default=6 | |
), | |
num_frames: int = Input( | |
description="Number of frames for the output video", default=49 | |
), | |
seed: int = Input( | |
description="Random seed. Leave blank to randomize the seed", default=None | |
), | |
) -> Path: | |
"""Run a single prediction on the model""" | |
if seed is None: | |
seed = int.from_bytes(os.urandom(2), "big") | |
print(f"Using seed: {seed}") | |
video = self.pipe( | |
prompt=prompt, | |
num_videos_per_prompt=1, | |
num_inference_steps=num_inference_steps, | |
num_frames=num_frames, | |
guidance_scale=guidance_scale, | |
generator=torch.Generator(device="cuda").manual_seed(seed), | |
).frames[0] | |
out_path = "/tmp/out.mp4" | |
export_to_video(video, out_path, fps=8) | |
return Path(out_path) | |