import os import argparse import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from mpl_toolkits.mplot3d.art3d import Poly3DCollection import pdb class CameraPoseVisualizer: def __init__(self, xlim, ylim, zlim): self.fig = plt.figure(figsize=(18, 7)) self.ax = self.fig.add_subplot(projection='3d') self.plotly_data = None # plotly data traces self.ax.set_aspect("auto") self.ax.set_xlim(xlim) self.ax.set_ylim(ylim) self.ax.set_zlim(zlim) self.ax.set_xlabel('x') self.ax.set_ylabel('y') self.ax.set_zlabel('z') # self.ax.view_init(elev=30, azim=-90) print('initialize camera pose visualizer') def extrinsic2pyramid(self, extrinsic, color_map='red', hw_ratio=9/16, base_xval=1, zval=3): vertex_std = np.array([[0, 0, 0, 1], [base_xval, -base_xval * hw_ratio, zval, 1], [base_xval, base_xval * hw_ratio, zval, 1], [-base_xval, base_xval * hw_ratio, zval, 1], [-base_xval, -base_xval * hw_ratio, zval, 1]]) vertex_transformed = vertex_std @ extrinsic.T meshes = [[vertex_transformed[0, :-1], vertex_transformed[1][:-1], vertex_transformed[2, :-1]], [vertex_transformed[0, :-1], vertex_transformed[2, :-1], vertex_transformed[3, :-1]], [vertex_transformed[0, :-1], vertex_transformed[3, :-1], vertex_transformed[4, :-1]], [vertex_transformed[0, :-1], vertex_transformed[4, :-1], vertex_transformed[1, :-1]], [vertex_transformed[1, :-1], vertex_transformed[2, :-1], vertex_transformed[3, :-1], vertex_transformed[4, :-1]]] color = color_map if isinstance(color_map, str) else plt.cm.rainbow(color_map) self.ax.add_collection3d( Poly3DCollection(meshes, facecolors=color, linewidths=0.3, edgecolors=color, alpha=0.35)) def colorbar(self, max_frame_length): cmap = mpl.cm.rainbow norm = mpl.colors.Normalize(vmin=0, vmax=max_frame_length) self.fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap), ax=self.ax, orientation='vertical', label='Frame Indexes') def show(self, save_path=None): plt.title('Camera Trajectory') plt.show() if save_path is not None: plt.savefig(save_path) def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--pose_file_path', required=True) parser.add_argument('--hw_ratio', default=9/16, type=float) parser.add_argument('--base_xval', type=float, default=1.0) parser.add_argument('--zval', type=float, default=2.0) parser.add_argument('--use_exact_fx', action='store_true') parser.add_argument('--relative_c2w', action='store_true') parser.add_argument('--x_min', type=float, default=-2) parser.add_argument('--x_max', type=float, default=2) parser.add_argument('--y_min', type=float, default=-2) parser.add_argument('--y_max', type=float, default=2) parser.add_argument('--z_min', type=float, default=-2) parser.add_argument('--z_max', type=float, default=2) parser.add_argument('--save_path', type=str, default='./assets/cam_trajectory/') return parser.parse_args() # def get_c2w(w2cs, transform_matrix, relative_c2w): # if relative_c2w: # target_cam_c2w = np.array([ # [1, 0, 0, 0], # [0, 1, 0, 0], # [0, 0, 1, 0], # [0, 0, 0, 1] # ]) # pdb.set_trace() # abs2rel = target_cam_c2w @ w2cs[0] # ret_poses = [target_cam_c2w, ] + [abs2rel @ np.linalg.inv(w2c) for w2c in w2cs[1:]] # pdb.set_trace() # camera_positions = np.asarray([c2w[:3, 3] for c2w in ret_poses]) # [n_frame, 3] # position_distances = [camera_positions[i] - camera_positions[i - 1] for i in range(1, len(camera_positions))] # xyz_max = np.max(camera_positions, axis=0) # xyz_min = np.min(camera_positions, axis=0) # xyz_ranges = xyz_max - xyz_min # [3, ] # max_range = np.max(xyz_ranges) # expected_xyz_ranges = 1 # pdb.set_trace() # scale_ratio = expected_xyz_ranges / max_range # scaled_position_distances = [dis * scale_ratio for dis in position_distances] # [n_frame - 1] # scaled_camera_positions = [camera_positions[0], ] # scaled_camera_positions.extend([camera_positions[0] + np.sum(np.asarray(scaled_position_distances[:i]), axis=0) # for i in range(1, len(camera_positions))]) # pdb.set_trace() # ret_poses = [np.concatenate((np.concatenate((ori_pose[:3, :3], cam_position[:, None]), axis=1), np.asarray([0, 0, 0, 1])[None]), axis=0) # for ori_pose, cam_position in zip(ret_poses, scaled_camera_positions)] # pdb.set_trace() # else: # ret_poses = [np.linalg.inv(w2c) for w2c in w2cs] # ret_poses = [transform_matrix @ x for x in ret_poses] # return np.array(ret_poses, dtype=np.float32) def get_c2w(w2cs, transform_matrix, relative_c2w): if relative_c2w: target_cam_c2w = np.array([ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1] ]) abs2rel = target_cam_c2w @ w2cs[0] ret_poses = [target_cam_c2w, ] + [abs2rel @ np.linalg.inv(w2c) for w2c in w2cs[1:]] # camera_positions = np.asarray([c2w[:3, 3] for c2w in ret_poses]) # [n_frame, 3] # ret_poses = [np.concatenate((np.concatenate((ori_pose[:3, :3], cam_position[:, None]), axis=1), np.asarray([0, 0, 0, 1])[None]), axis=0) # for ori_pose, cam_position in zip(ret_poses, camera_positions)] else: ret_poses = [np.linalg.inv(w2c) for w2c in w2cs] ret_poses = [transform_matrix @ x for x in ret_poses] return np.array(ret_poses, dtype=np.float32) if __name__ == '__main__': args = get_args() with open(args.pose_file_path, 'r') as f: poses = f.readlines() w2cs = [np.asarray([float(p) for p in pose.strip().split(' ')[6:]]).reshape(3, 4) for pose in poses] fxs = [float(pose.strip().split(' ')[1]) for pose in poses[1:]] num_frames = len(w2cs) transform_matrix = np.asarray([[1, 0, 0, 0], [0, 0, 1, 0], [0, -1, 0, 0], [0, 0, 0, 1]]).reshape(4, 4) # For World Coordinates! # transform_matrix = np.asarray([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]).reshape(4, 4) # For Camera Coordinates! last_row = np.zeros((1, 4)) last_row[0, -1] = 1.0 w2cs = [np.concatenate((w2c, last_row), axis=0) for w2c in w2cs] c2ws = get_c2w(w2cs, transform_matrix, args.relative_c2w) visualizer = CameraPoseVisualizer([args.x_min, args.x_max], [args.y_min, args.y_max], [args.z_min, args.z_max]) for frame_idx, c2w in enumerate(c2ws): visualizer.extrinsic2pyramid(c2w, frame_idx / num_frames, hw_ratio=args.hw_ratio, base_xval=args.base_xval, zval=(fxs[frame_idx] if args.use_exact_fx else args.zval)) visualizer.colorbar(num_frames) pose_file_name = args.pose_file_path.split('/')[-1].split('.')[0] os.makedirs(args.save_path, exist_ok=True) save_path = os.path.join(args.save_path, pose_file_name+'.png') visualizer.show(save_path)