File size: 7,087 Bytes
b6af722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from hydra.core.config_store import ConfigStore
from megatron.core import parallel_state
from torch.utils.data import DataLoader, DistributedSampler

from cosmos_predict1.diffusion.training.callbacks.iter_speed import IterSpeed
from cosmos_predict1.diffusion.training.callbacks.low_precision import LowPrecisionCallback
from cosmos_predict1.diffusion.training.datasets.dataset_multiview import Dataset
from cosmos_predict1.diffusion.training.models.extend_model_multiview import FSDPExtendDiffusionModel
from cosmos_predict1.diffusion.training.networks.general_dit_lvg_multiview import VideoExtendMultiviewGeneralDIT
from cosmos_predict1.utils import log
from cosmos_predict1.utils.callbacks.grad_clip import GradClip
from cosmos_predict1.utils.lazy_config import PLACEHOLDER
from cosmos_predict1.utils.lazy_config import LazyCall as L
from cosmos_predict1.utils.lazy_config import LazyDict


def get_sampler(dataset):
    return DistributedSampler(
        dataset,
        num_replicas=parallel_state.get_data_parallel_world_size(),
        rank=parallel_state.get_data_parallel_rank(),
        shuffle=True,
        seed=0,
    )


cs = ConfigStore.instance()

num_frames = 57
num_views = 5
view_keys = ["pinhole_front_left", "pinhole_front", "pinhole_front_right", "pinhole_side_left", "pinhole_side_right"]
example_multiview_dataset_waymo = L(Dataset)(
    dataset_dir="datasets/waymo",
    sequence_interval=1,
    num_frames=num_frames,
    view_keys=view_keys,
    video_size=(480, 848),
)


video2world_multiview_7b_example_waymo = LazyDict(
    dict(
        defaults=[
            {"override /net": "faditv2_7b"},
            {"override /conditioner": "video_cond"},
            {"override /ckpt_klass": "fsdp"},
            {"override /checkpoint": "local"},
            {"override /vae": "cosmos_diffusion_tokenizer_comp8x8x8"},
            "_self_",
        ],
        job=dict(
            project="posttraining",
            group="diffusion_video2world",
            name="video2world_multiview_7b_example_waymo",
        ),
        optimizer=dict(
            lr=2 ** (-14.3),  # 2**(-14.3) approx 5e-5
            weight_decay=0.1,
            betas=[0.9, 0.99],
            eps=1e-10,
        ),
        checkpoint=dict(
            save_iter=200,
            # broadcast_via_filesystem=True,
            broadcast_via_filesystem=False,
            load_path="checkpoints/Cosmos-Predict1-7B-Video2World-Sample-AV-Multiview/model.pt",
            load_training_state=False,
            strict_resume=False,
            keys_not_to_resume=[],
        ),
        trainer=dict(
            max_iter=2000,
            distributed_parallelism="fsdp",
            logging_iter=200,
            callbacks=dict(
                grad_clip=L(GradClip)(
                    model_key="model",
                    fsdp_enabled=True,
                ),
                low_prec=L(LowPrecisionCallback)(config=PLACEHOLDER, trainer=PLACEHOLDER, update_iter=1),
                iter_speed=L(IterSpeed)(
                    every_n=200,
                    hit_thres=5,
                ),
            ),
        ),
        model_parallel=dict(
            sequence_parallel=False,
            tensor_model_parallel_size=1,
            context_parallel_size=1,
        ),
        model=dict(
            n_views=num_views,
            # Use 16x16x32x40 latent shape for training
            latent_shape=[
                16,  # Latent channel dim
                16,  # Latent temporal dim
                88,  # Latent height dim
                160,  # Latent width dim
            ],
            loss_reduce="mean",
            ema=dict(
                enabled=True,
            ),
            fsdp_enabled=True,
            fsdp=dict(
                policy="block",
                checkpoint=True,
                min_num_params=1024,
                sharding_group_size=32,
                sharding_strategy="hybrid",
            ),
            net=L(VideoExtendMultiviewGeneralDIT)(
                rope_h_extrapolation_ratio=1,
                rope_w_extrapolation_ratio=1,
                rope_t_extrapolation_ratio=2,
                n_views=num_views,
            ),
            conditioner=dict(
                video_cond_bool=dict(
                    condition_location="first_random_n",
                    cfg_unconditional_type="zero_condition_region_condition_mask",
                    apply_corruption_to_condition_region="noise_with_sigma",
                    condition_on_augment_sigma=False,
                    dropout_rate=0.0,  # No dropout
                    first_random_n_num_condition_t_max=2,
                    normalize_condition_latent=False,
                    # Let the augment sigma mostly fall in the range of 0 to 0.3
                    augment_sigma_sample_p_mean=-3.0,
                    augment_sigma_sample_p_std=2.0,
                    augment_sigma_sample_multiplier=1.0,
                )
            ),
            vae=dict(pixel_chunk_duration=num_frames),
        ),
        model_obj=L(FSDPExtendDiffusionModel)(
            config=PLACEHOLDER,
            fsdp_checkpointer=PLACEHOLDER,
        ),
        # warming up for first 2500 steps~(when resume from 310000)
        scheduler=dict(
            warm_up_steps=[2500],
            cycle_lengths=[10000000000000],
            f_start=[1.0e-6],
            f_max=[1.0],
            f_min=[1.0],
        ),
        dataloader_train=L(DataLoader)(
            dataset=example_multiview_dataset_waymo,
            sampler=L(get_sampler)(dataset=example_multiview_dataset_waymo),
            batch_size=1,
            drop_last=True,
            pin_memory=True,
            num_workers=8,
        ),
        dataloader_val=L(DataLoader)(
            dataset=example_multiview_dataset_waymo,
            sampler=L(get_sampler)(dataset=example_multiview_dataset_waymo),
            batch_size=1,
            drop_last=True,
            pin_memory=True,
            num_workers=8,
        ),
    )
)


def register_experiments(cs):
    # Register the experiments
    for _item in [
        video2world_multiview_7b_example_waymo,
    ]:
        experiment_name = _item["job"]["name"]
        log.info(f"Registering experiment: {experiment_name}")
        cs.store(
            group="experiment",
            package="_global_",
            name=experiment_name,
            node=_item,
        )