File size: 12,553 Bytes
b6af722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional

import torch
from einops import rearrange
from megatron.core import parallel_state
from torch import nn

from cosmos_predict1.diffusion.training.conditioner import DataType
from cosmos_predict1.diffusion.training.context_parallel import split_inputs_cp
from cosmos_predict1.diffusion.training.module.blocks import SDXLTimestepEmbedding, SDXLTimesteps
from cosmos_predict1.diffusion.training.networks.general_dit import GeneralDIT
from cosmos_predict1.diffusion.training.tensor_parallel import scatter_along_first_dim
from cosmos_predict1.utils import log


class VideoExtendGeneralDIT(GeneralDIT):
    def __init__(self, *args, in_channels=16 + 1, add_augment_sigma_embedding=False, **kwargs):
        self.add_augment_sigma_embedding = add_augment_sigma_embedding

        # extra channel for video condition mask
        super().__init__(*args, in_channels=in_channels, **kwargs)
        log.info(f"VideoExtendGeneralDIT in_channels: {in_channels}")

    def build_additional_timestamp_embedder(self):
        super().build_additional_timestamp_embedder()
        if self.add_augment_sigma_embedding:
            log.info("Adding augment sigma embedding")
            self.augment_sigma_embedder = nn.Sequential(
                SDXLTimesteps(self.model_channels),
                SDXLTimestepEmbedding(self.model_channels, self.model_channels, use_adaln_lora=self.use_adaln_lora),
            )

    def init_weights(self):
        if self.add_augment_sigma_embedding:
            # Initialize timestep embedding for augment sigma
            nn.init.normal_(self.augment_sigma_embedder[1].linear_1.weight, std=0.02)
            if self.augment_sigma_embedder[1].linear_1.bias is not None:
                nn.init.constant_(self.augment_sigma_embedder[1].linear_1.bias, 0)
            nn.init.normal_(self.augment_sigma_embedder[1].linear_2.weight, std=0.02)
            if self.augment_sigma_embedder[1].linear_2.bias is not None:
                nn.init.constant_(self.augment_sigma_embedder[1].linear_2.bias, 0)

        super().init_weights()  # Call this last since it wil call TP weight init

    def forward(
        self,
        x: torch.Tensor,
        timesteps: torch.Tensor,
        crossattn_emb: torch.Tensor,
        crossattn_mask: Optional[torch.Tensor] = None,
        fps: Optional[torch.Tensor] = None,
        image_size: Optional[torch.Tensor] = None,
        padding_mask: Optional[torch.Tensor] = None,
        scalar_feature: Optional[torch.Tensor] = None,
        data_type: Optional[DataType] = DataType.VIDEO,
        video_cond_bool: Optional[torch.Tensor] = None,
        condition_video_indicator: Optional[torch.Tensor] = None,
        condition_video_input_mask: Optional[torch.Tensor] = None,
        condition_video_augment_sigma: Optional[torch.Tensor] = None,
        condition_video_pose: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> torch.Tensor:
        """Args:
        condition_video_augment_sigma: (B) tensor of sigma value for the conditional input augmentation
        condition_video_pose: (B, 1, T, H, W) tensor of pose condition
        """
        B, C, T, H, W = x.shape

        if data_type == DataType.VIDEO:
            assert (
                condition_video_input_mask is not None
            ), "condition_video_input_mask is required for video data type; check if your model_obj is extend_model.FSDPDiffusionModel or the base DiffusionModel"
            if self.cp_group is not None:
                condition_video_input_mask = split_inputs_cp(
                    condition_video_input_mask, seq_dim=2, cp_group=self.cp_group
                )
                condition_video_indicator = split_inputs_cp(
                    condition_video_indicator, seq_dim=2, cp_group=self.cp_group
                )
                if condition_video_pose is not None:
                    condition_video_pose = split_inputs_cp(condition_video_pose, seq_dim=2, cp_group=self.cp_group)
            # log.critical(f"hit video case, video_cond_bool: {video_cond_bool}, condition_video_indicator: {condition_video_indicator.flatten()}, condition_video_input_mask: {condition_video_input_mask.shape}, {condition_video_input_mask[:,:,:,0,0]}", rank0_only=False)
            input_list = [x, condition_video_input_mask]
            if condition_video_pose is not None:
                if condition_video_pose.shape[2] > T:
                    log.warning(
                        f"condition_video_pose has more frames than the input video: {condition_video_pose.shape} > {x.shape}"
                    )
                    condition_video_pose = condition_video_pose[:, :, :T, :, :].contiguous()
                input_list.append(condition_video_pose)
            x = torch.cat(
                input_list,
                dim=1,
            )

        if data_type == DataType.IMAGE:
            # For image, we dont have condition_video_input_mask, or condition_video_pose
            # We need to add the extra channel for video condition mask
            padding_channels = self.in_channels - x.shape[1]
            x = torch.cat([x, torch.zeros((B, padding_channels, T, H, W), dtype=x.dtype, device=x.device)], dim=1)
        else:
            assert x.shape[1] == self.in_channels, f"Expected {self.in_channels} channels, got {x.shape[1]}"
        return super().forward(
            x=x,
            timesteps=timesteps,
            crossattn_emb=crossattn_emb,
            crossattn_mask=crossattn_mask,
            fps=fps,
            image_size=image_size,
            padding_mask=padding_mask,
            scalar_feature=scalar_feature,
            data_type=data_type,
            condition_video_augment_sigma=condition_video_augment_sigma,
            **kwargs,
        )

    def forward_before_blocks(
        self,
        x: torch.Tensor,
        timesteps: torch.Tensor,
        crossattn_emb: torch.Tensor,
        crossattn_mask: Optional[torch.Tensor] = None,
        fps: Optional[torch.Tensor] = None,
        image_size: Optional[torch.Tensor] = None,
        padding_mask: Optional[torch.Tensor] = None,
        scalar_feature: Optional[torch.Tensor] = None,
        data_type: Optional[DataType] = DataType.VIDEO,
        latent_condition: Optional[torch.Tensor] = None,
        latent_condition_sigma: Optional[torch.Tensor] = None,
        condition_video_augment_sigma: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> torch.Tensor:
        """
        Args:
            x: (B, C, T, H, W) tensor of spatial-temp inputs
            timesteps: (B, ) tensor of timesteps
            crossattn_emb: (B, N, D) tensor of cross-attention embeddings
            crossattn_mask: (B, N) tensor of cross-attention masks

            condition_video_augment_sigma: (B, T) tensor of sigma value for the conditional input augmentation
        """
        del kwargs
        assert isinstance(
            data_type, DataType
        ), f"Expected DataType, got {type(data_type)}. We need discuss this flag later."
        original_shape = x.shape
        x_B_T_H_W_D, rope_emb_L_1_1_D, extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = self.prepare_embedded_sequence(
            x,
            fps=fps,
            padding_mask=padding_mask,
            latent_condition=latent_condition,
            latent_condition_sigma=latent_condition_sigma,
        )
        # logging affline scale information
        affline_scale_log_info = {}

        timesteps_B_D, adaln_lora_B_3D = self.t_embedder(timesteps.flatten())
        affline_emb_B_D = timesteps_B_D
        affline_scale_log_info["timesteps_B_D"] = timesteps_B_D.detach()

        if scalar_feature is not None:
            raise NotImplementedError("Scalar feature is not implemented yet.")
            timesteps_B_D = timesteps_B_D + scalar_feature.mean(dim=1)
        if self.additional_timestamp_channels:
            additional_cond_B_D = self.prepare_additional_timestamp_embedder(
                bs=x.shape[0],
                fps=fps,
                h=image_size[:, 0],
                w=image_size[:, 1],
                org_h=image_size[:, 2],
                org_w=image_size[:, 3],
            )

            affline_emb_B_D += additional_cond_B_D
            affline_scale_log_info["additional_cond_B_D"] = additional_cond_B_D.detach()
        if self.add_augment_sigma_embedding:
            if condition_video_augment_sigma is None:
                # Handling image case
                # Note: for video case, when there is not condition frames, we also set it as zero, see extend_model augment_conditional_latent_frames function
                assert data_type == DataType.IMAGE, "condition_video_augment_sigma is required for video data type"
                condition_video_augment_sigma = torch.zeros_like(timesteps.flatten())

            affline_augment_sigma_emb_B_D, adaln_lora_sigma_emb_B_3D = self.augment_sigma_embedder(
                condition_video_augment_sigma.flatten()
            )
            affline_emb_B_D = affline_emb_B_D + affline_augment_sigma_emb_B_D
        affline_scale_log_info["affline_emb_B_D"] = affline_emb_B_D.detach()
        affline_emb_B_D = self.affline_norm(affline_emb_B_D)

        # for logging purpose
        self.affline_scale_log_info = affline_scale_log_info
        self.affline_emb = affline_emb_B_D
        self.crossattn_emb = crossattn_emb
        self.crossattn_mask = crossattn_mask

        if self.use_cross_attn_mask:
            crossattn_mask = crossattn_mask[:, None, None, :].to(dtype=torch.bool)  # [B, 1, 1, length]
        else:
            crossattn_mask = None

        if self.blocks["block0"].x_format == "THWBD":
            x = rearrange(x_B_T_H_W_D, "B T H W D -> T H W B D")
            if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None:
                extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = rearrange(
                    extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, "B T H W D -> T H W B D"
                )
            crossattn_emb = rearrange(crossattn_emb, "B M D -> M B D")
            if crossattn_mask:
                crossattn_mask = rearrange(crossattn_mask, "B M -> M B")

            if self.sequence_parallel:
                tp_group = parallel_state.get_tensor_model_parallel_group()
                # Sequence parallel requires the input tensor to be scattered along the first dimension.
                assert self.block_config == "FA-CA-MLP"  # Only support this block config for now
                T, H, W, B, D = x.shape
                # variable name x_T_H_W_B_D is no longer valid. x is reshaped to THW*1*1*b*D and will be reshaped back in FinalLayer
                x = x.view(T * H * W, 1, 1, B, D)
                assert x.shape[0] % parallel_state.get_tensor_model_parallel_world_size() == 0
                x = scatter_along_first_dim(x, tp_group)

                if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None:
                    extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.view(
                        T * H * W, 1, 1, B, D
                    )
                    extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = scatter_along_first_dim(
                        extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, tp_group
                    )

        elif self.blocks["block0"].x_format == "BTHWD":
            x = x_B_T_H_W_D
        else:
            raise ValueError(f"Unknown x_format {self.blocks[0].x_format}")
        output = {
            "x": x,
            "affline_emb_B_D": affline_emb_B_D,
            "crossattn_emb": crossattn_emb,
            "crossattn_mask": crossattn_mask,
            "rope_emb_L_1_1_D": rope_emb_L_1_1_D,
            "adaln_lora_B_3D": adaln_lora_B_3D,
            "original_shape": original_shape,
            "extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D": extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D,
        }
        return output