Spaces:
Build error
Build error
File size: 12,553 Bytes
b6af722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional
import torch
from einops import rearrange
from megatron.core import parallel_state
from torch import nn
from cosmos_predict1.diffusion.training.conditioner import DataType
from cosmos_predict1.diffusion.training.context_parallel import split_inputs_cp
from cosmos_predict1.diffusion.training.module.blocks import SDXLTimestepEmbedding, SDXLTimesteps
from cosmos_predict1.diffusion.training.networks.general_dit import GeneralDIT
from cosmos_predict1.diffusion.training.tensor_parallel import scatter_along_first_dim
from cosmos_predict1.utils import log
class VideoExtendGeneralDIT(GeneralDIT):
def __init__(self, *args, in_channels=16 + 1, add_augment_sigma_embedding=False, **kwargs):
self.add_augment_sigma_embedding = add_augment_sigma_embedding
# extra channel for video condition mask
super().__init__(*args, in_channels=in_channels, **kwargs)
log.info(f"VideoExtendGeneralDIT in_channels: {in_channels}")
def build_additional_timestamp_embedder(self):
super().build_additional_timestamp_embedder()
if self.add_augment_sigma_embedding:
log.info("Adding augment sigma embedding")
self.augment_sigma_embedder = nn.Sequential(
SDXLTimesteps(self.model_channels),
SDXLTimestepEmbedding(self.model_channels, self.model_channels, use_adaln_lora=self.use_adaln_lora),
)
def init_weights(self):
if self.add_augment_sigma_embedding:
# Initialize timestep embedding for augment sigma
nn.init.normal_(self.augment_sigma_embedder[1].linear_1.weight, std=0.02)
if self.augment_sigma_embedder[1].linear_1.bias is not None:
nn.init.constant_(self.augment_sigma_embedder[1].linear_1.bias, 0)
nn.init.normal_(self.augment_sigma_embedder[1].linear_2.weight, std=0.02)
if self.augment_sigma_embedder[1].linear_2.bias is not None:
nn.init.constant_(self.augment_sigma_embedder[1].linear_2.bias, 0)
super().init_weights() # Call this last since it wil call TP weight init
def forward(
self,
x: torch.Tensor,
timesteps: torch.Tensor,
crossattn_emb: torch.Tensor,
crossattn_mask: Optional[torch.Tensor] = None,
fps: Optional[torch.Tensor] = None,
image_size: Optional[torch.Tensor] = None,
padding_mask: Optional[torch.Tensor] = None,
scalar_feature: Optional[torch.Tensor] = None,
data_type: Optional[DataType] = DataType.VIDEO,
video_cond_bool: Optional[torch.Tensor] = None,
condition_video_indicator: Optional[torch.Tensor] = None,
condition_video_input_mask: Optional[torch.Tensor] = None,
condition_video_augment_sigma: Optional[torch.Tensor] = None,
condition_video_pose: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
"""Args:
condition_video_augment_sigma: (B) tensor of sigma value for the conditional input augmentation
condition_video_pose: (B, 1, T, H, W) tensor of pose condition
"""
B, C, T, H, W = x.shape
if data_type == DataType.VIDEO:
assert (
condition_video_input_mask is not None
), "condition_video_input_mask is required for video data type; check if your model_obj is extend_model.FSDPDiffusionModel or the base DiffusionModel"
if self.cp_group is not None:
condition_video_input_mask = split_inputs_cp(
condition_video_input_mask, seq_dim=2, cp_group=self.cp_group
)
condition_video_indicator = split_inputs_cp(
condition_video_indicator, seq_dim=2, cp_group=self.cp_group
)
if condition_video_pose is not None:
condition_video_pose = split_inputs_cp(condition_video_pose, seq_dim=2, cp_group=self.cp_group)
# log.critical(f"hit video case, video_cond_bool: {video_cond_bool}, condition_video_indicator: {condition_video_indicator.flatten()}, condition_video_input_mask: {condition_video_input_mask.shape}, {condition_video_input_mask[:,:,:,0,0]}", rank0_only=False)
input_list = [x, condition_video_input_mask]
if condition_video_pose is not None:
if condition_video_pose.shape[2] > T:
log.warning(
f"condition_video_pose has more frames than the input video: {condition_video_pose.shape} > {x.shape}"
)
condition_video_pose = condition_video_pose[:, :, :T, :, :].contiguous()
input_list.append(condition_video_pose)
x = torch.cat(
input_list,
dim=1,
)
if data_type == DataType.IMAGE:
# For image, we dont have condition_video_input_mask, or condition_video_pose
# We need to add the extra channel for video condition mask
padding_channels = self.in_channels - x.shape[1]
x = torch.cat([x, torch.zeros((B, padding_channels, T, H, W), dtype=x.dtype, device=x.device)], dim=1)
else:
assert x.shape[1] == self.in_channels, f"Expected {self.in_channels} channels, got {x.shape[1]}"
return super().forward(
x=x,
timesteps=timesteps,
crossattn_emb=crossattn_emb,
crossattn_mask=crossattn_mask,
fps=fps,
image_size=image_size,
padding_mask=padding_mask,
scalar_feature=scalar_feature,
data_type=data_type,
condition_video_augment_sigma=condition_video_augment_sigma,
**kwargs,
)
def forward_before_blocks(
self,
x: torch.Tensor,
timesteps: torch.Tensor,
crossattn_emb: torch.Tensor,
crossattn_mask: Optional[torch.Tensor] = None,
fps: Optional[torch.Tensor] = None,
image_size: Optional[torch.Tensor] = None,
padding_mask: Optional[torch.Tensor] = None,
scalar_feature: Optional[torch.Tensor] = None,
data_type: Optional[DataType] = DataType.VIDEO,
latent_condition: Optional[torch.Tensor] = None,
latent_condition_sigma: Optional[torch.Tensor] = None,
condition_video_augment_sigma: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
"""
Args:
x: (B, C, T, H, W) tensor of spatial-temp inputs
timesteps: (B, ) tensor of timesteps
crossattn_emb: (B, N, D) tensor of cross-attention embeddings
crossattn_mask: (B, N) tensor of cross-attention masks
condition_video_augment_sigma: (B, T) tensor of sigma value for the conditional input augmentation
"""
del kwargs
assert isinstance(
data_type, DataType
), f"Expected DataType, got {type(data_type)}. We need discuss this flag later."
original_shape = x.shape
x_B_T_H_W_D, rope_emb_L_1_1_D, extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = self.prepare_embedded_sequence(
x,
fps=fps,
padding_mask=padding_mask,
latent_condition=latent_condition,
latent_condition_sigma=latent_condition_sigma,
)
# logging affline scale information
affline_scale_log_info = {}
timesteps_B_D, adaln_lora_B_3D = self.t_embedder(timesteps.flatten())
affline_emb_B_D = timesteps_B_D
affline_scale_log_info["timesteps_B_D"] = timesteps_B_D.detach()
if scalar_feature is not None:
raise NotImplementedError("Scalar feature is not implemented yet.")
timesteps_B_D = timesteps_B_D + scalar_feature.mean(dim=1)
if self.additional_timestamp_channels:
additional_cond_B_D = self.prepare_additional_timestamp_embedder(
bs=x.shape[0],
fps=fps,
h=image_size[:, 0],
w=image_size[:, 1],
org_h=image_size[:, 2],
org_w=image_size[:, 3],
)
affline_emb_B_D += additional_cond_B_D
affline_scale_log_info["additional_cond_B_D"] = additional_cond_B_D.detach()
if self.add_augment_sigma_embedding:
if condition_video_augment_sigma is None:
# Handling image case
# Note: for video case, when there is not condition frames, we also set it as zero, see extend_model augment_conditional_latent_frames function
assert data_type == DataType.IMAGE, "condition_video_augment_sigma is required for video data type"
condition_video_augment_sigma = torch.zeros_like(timesteps.flatten())
affline_augment_sigma_emb_B_D, adaln_lora_sigma_emb_B_3D = self.augment_sigma_embedder(
condition_video_augment_sigma.flatten()
)
affline_emb_B_D = affline_emb_B_D + affline_augment_sigma_emb_B_D
affline_scale_log_info["affline_emb_B_D"] = affline_emb_B_D.detach()
affline_emb_B_D = self.affline_norm(affline_emb_B_D)
# for logging purpose
self.affline_scale_log_info = affline_scale_log_info
self.affline_emb = affline_emb_B_D
self.crossattn_emb = crossattn_emb
self.crossattn_mask = crossattn_mask
if self.use_cross_attn_mask:
crossattn_mask = crossattn_mask[:, None, None, :].to(dtype=torch.bool) # [B, 1, 1, length]
else:
crossattn_mask = None
if self.blocks["block0"].x_format == "THWBD":
x = rearrange(x_B_T_H_W_D, "B T H W D -> T H W B D")
if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None:
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = rearrange(
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, "B T H W D -> T H W B D"
)
crossattn_emb = rearrange(crossattn_emb, "B M D -> M B D")
if crossattn_mask:
crossattn_mask = rearrange(crossattn_mask, "B M -> M B")
if self.sequence_parallel:
tp_group = parallel_state.get_tensor_model_parallel_group()
# Sequence parallel requires the input tensor to be scattered along the first dimension.
assert self.block_config == "FA-CA-MLP" # Only support this block config for now
T, H, W, B, D = x.shape
# variable name x_T_H_W_B_D is no longer valid. x is reshaped to THW*1*1*b*D and will be reshaped back in FinalLayer
x = x.view(T * H * W, 1, 1, B, D)
assert x.shape[0] % parallel_state.get_tensor_model_parallel_world_size() == 0
x = scatter_along_first_dim(x, tp_group)
if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None:
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.view(
T * H * W, 1, 1, B, D
)
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = scatter_along_first_dim(
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, tp_group
)
elif self.blocks["block0"].x_format == "BTHWD":
x = x_B_T_H_W_D
else:
raise ValueError(f"Unknown x_format {self.blocks[0].x_format}")
output = {
"x": x,
"affline_emb_B_D": affline_emb_B_D,
"crossattn_emb": crossattn_emb,
"crossattn_mask": crossattn_mask,
"rope_emb_L_1_1_D": rope_emb_L_1_1_D,
"adaln_lora_B_3D": adaln_lora_B_3D,
"original_shape": original_shape,
"extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D": extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D,
}
return output
|