Spaces:
Build error
Build error
File size: 5,436 Bytes
b6af722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
from typing import Dict
from hydra.core.config_store import ConfigStore
from cosmos_predict1.checkpointer.peft_checkpointer import Checkpointer as PEFTCheckpointer
from cosmos_predict1.diffusion.checkpointers.ema_fsdp_checkpointer import CheckpointConfig, FSDPCheckpointer
from cosmos_predict1.diffusion.conditioner import VideoExtendConditioner
from cosmos_predict1.diffusion.config.base.conditioner import (
FPSConfig,
ImageSizeConfig,
NumFramesConfig,
PaddingMaskConfig,
TextConfig,
VideoCondBoolConfig,
)
from cosmos_predict1.diffusion.training.conditioner import VideoConditioner
from cosmos_predict1.diffusion.training.config.base.optim import FusedAdamWConfig, LambdaLinearSchedulerConfig
from cosmos_predict1.diffusion.training.config.base.vae import get_cosmos_tokenizer_comp8x8x8
from cosmos_predict1.diffusion.training.config.text2world.experiment import register_experiments
from cosmos_predict1.diffusion.training.networks.general_dit import GeneralDIT
from cosmos_predict1.utils.ema import PowerEMATracker
from cosmos_predict1.utils.lazy_config import PLACEHOLDER
from cosmos_predict1.utils.lazy_config import LazyCall as L
from cosmos_predict1.utils.lazy_config import LazyDict
FSDP_CHECKPOINTER: Dict[str, str] = L(FSDPCheckpointer)()
PEFT_CHECKPOINTER: Dict[str, str] = L(PEFTCheckpointer)()
VideoExtendConditionerConfig: LazyDict = L(VideoExtendConditioner)(
text=TextConfig(),
fps=FPSConfig(),
num_frames=NumFramesConfig(),
image_size=ImageSizeConfig(),
padding_mask=PaddingMaskConfig(),
video_cond_bool=VideoCondBoolConfig(),
)
VideoConditionerFpsSizePaddingConfig: LazyDict = L(VideoConditioner)(
text=TextConfig(),
fps=FPSConfig(),
num_frames=NumFramesConfig(),
image_size=ImageSizeConfig(),
padding_mask=PaddingMaskConfig(),
)
def register_conditioner(cs):
cs.store(
group="conditioner",
package="model.conditioner",
name="video_cond",
node=VideoExtendConditionerConfig,
)
cs.store(
group="conditioner",
package="model.conditioner",
name="add_fps_image_size_padding_mask",
node=VideoConditionerFpsSizePaddingConfig,
)
def register_checkpoint_credential(cs):
CHECKPOINT_LOCAL = CheckpointConfig(
save_iter=1000,
load_path="",
load_training_state=False,
strict_resume=True,
)
cs.store(group="checkpoint", package="checkpoint", name="local", node=CHECKPOINT_LOCAL)
def register_checkpointer(cs):
cs.store(group="ckpt_klass", package="checkpoint.type", name="fsdp", node=FSDP_CHECKPOINTER)
cs.store(group="ckpt_klass", package="checkpoint.type", name="peft", node=PEFT_CHECKPOINTER)
FADITV2Config: LazyDict = L(GeneralDIT)(
max_img_h=240,
max_img_w=240,
max_frames=128,
in_channels=16,
out_channels=16,
patch_spatial=2,
patch_temporal=1,
model_channels=4096,
block_config="FA-CA-MLP",
spatial_attn_win_size=1,
temporal_attn_win_size=1,
num_blocks=28,
num_heads=32,
concat_padding_mask=True,
pos_emb_cls="rope3d",
pos_emb_learnable=False,
pos_emb_interpolation="crop",
block_x_format="THWBD",
additional_timestamp_channels=None,
affline_emb_norm=True,
use_adaln_lora=True,
adaln_lora_dim=256,
legacy_patch_emb=False,
)
FADITV2_14B_Config = copy.deepcopy(FADITV2Config)
FADITV2_14B_Config.model_channels = 5120
FADITV2_14B_Config.num_heads = 40
FADITV2_14B_Config.num_blocks = 36
def register_net(cs):
cs.store(group="net", package="model.net", name="faditv2_7b", node=FADITV2Config)
cs.store(group="net", package="model.net", name="faditv2_14b", node=FADITV2_14B_Config)
def register_vae(cs):
cs.store(
group="vae",
package="model.vae",
name="cosmos_diffusion_tokenizer_comp8x8x8",
node=get_cosmos_tokenizer_comp8x8x8(resolution="720", chunk_duration=121),
)
PowerEMAConfig: LazyDict = L(PowerEMATracker.initialize_multi_rank_ema)(
model=PLACEHOLDER, enabled=True, rate=0.10, num=3
)
def register_ema(cs):
cs.store(group="ema", package="model.ema", name="power", node=PowerEMAConfig)
def register_optimizer(cs):
cs.store(group="optimizer", package="optimizer", name="fusedadamw", node=FusedAdamWConfig)
def register_scheduler(cs):
cs.store(group="scheduler", package="scheduler", name="lambdalinear", node=LambdaLinearSchedulerConfig)
def register_configs():
cs = ConfigStore.instance()
register_optimizer(cs)
register_scheduler(cs)
register_net(cs)
register_conditioner(cs)
register_vae(cs)
register_ema(cs)
register_checkpoint_credential(cs)
register_checkpointer(cs)
register_experiments(cs)
|