Spaces:
Build error
Build error
File size: 21,576 Bytes
b6af722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Additional augmentors for image and video training loops."""
from typing import Any, Optional
import omegaconf
import torch
import torchvision.transforms.functional as transforms_F
from loguru import logger as logging
from cosmos_predict1.tokenizer.training.datasets.utils import obtain_augmentation_size, obtain_image_size
from cosmos_predict1.utils import log
class Augmentor:
def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None:
r"""Base augmentor class
Args:
input_keys (list): List of input keys
output_keys (list): List of output keys
args (dict): Arguments associated with the augmentation
"""
self.input_keys = input_keys
self.output_keys = output_keys
self.args = args
def __call__(self, *args: Any, **kwds: Any) -> Any:
raise ValueError("Augmentor not implemented")
class LossMask(Augmentor):
def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None:
super().__init__(input_keys, output_keys, args)
def __call__(self, data_dict: dict) -> dict:
r"""Performs data normalization.
Args:
data_dict (dict): Input data dict
Returns:
data_dict (dict): Output dict where images are center cropped.
"""
assert self.args is not None, "Please specify args"
mask_config = self.args["masking"]
input_key = self.input_keys[0]
default_mask = torch.ones_like(data_dict[input_key])
loss_mask = mask_config["nonhuman_mask"] * default_mask
for curr_key in mask_config:
if curr_key not in self.input_keys:
continue
curr_mask = data_dict[curr_key]
curr_weight = mask_config[curr_key]
curr_loss_mask = curr_mask * curr_weight + (1 - curr_mask) * loss_mask
loss_mask = torch.max(curr_loss_mask, loss_mask)
_ = data_dict.pop(curr_key)
data_dict["loss_mask"] = loss_mask
return data_dict
class UnsqueezeImage(Augmentor):
def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None:
super().__init__(input_keys, output_keys, args)
def __call__(self, data_dict: dict) -> dict:
r"""Performs horizontal flipping.
Args:
data_dict (dict): Input data dict
Returns:
data_dict (dict): Output dict where images are center cropped.
"""
for key in self.input_keys:
data_dict[key] = data_dict[key].unsqueeze(1)
return data_dict
class RandomReverse(Augmentor):
def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None:
super().__init__(input_keys, output_keys, args)
def __call__(self, data_dict: dict) -> dict:
r"""Performs random temporal reversing of frames.
Args:
data_dict (dict): Input data dict, CxTxHxW
Returns:
data_dict (dict): Output dict where videos are randomly reversed.
"""
assert self.args is not None
p = self.args.get("prob", 0.5)
coin_flip = torch.rand(1).item() <= p
for key in self.input_keys:
if coin_flip:
data_dict[key] = torch.flip(data_dict[key], dims=[1])
return data_dict
class RenameInputKeys(Augmentor):
def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None:
super().__init__(input_keys, output_keys, args)
def __call__(self, data_dict: dict) -> dict:
r"""Rename the input keys from the data dict.
Args:
data_dict (dict): Input data dict
Returns:
data_dict (dict): Output dict with keys renamed.
"""
assert len(self.input_keys) == len(self.output_keys)
for input_key, output_key in zip(self.input_keys, self.output_keys):
if input_key in data_dict:
data_dict[output_key] = data_dict.pop(input_key)
return data_dict
class CropResizeAugmentor(Augmentor):
def __init__(
self,
input_keys: list,
output_keys: Optional[list] = None,
crop_args: Optional[dict] = None,
resize_args: Optional[dict] = None,
args: Optional[dict] = None,
) -> None:
super().__init__(input_keys, output_keys, args)
self.crop_args = crop_args
self.resize_args = resize_args
self.crop_op = RandomCrop(input_keys, output_keys, crop_args)
self.resize_op = ResizeSmallestSideAspectPreserving(input_keys, output_keys, resize_args)
def __call__(self, data_dict: dict) -> dict:
r"""Performs random temporal reversing of frames.
Args:
data_dict (dict): Input data dict
Returns:
data_dict (dict): Output dict where videso are randomly reversed.
"""
assert self.args is not None
p = self.args.get("prob", 0.1)
if p > 0.0:
crop_img_size = obtain_augmentation_size(data_dict, self.crop_args)
crop_width, crop_height = crop_img_size
orig_w, orig_h = obtain_image_size(data_dict, self.input_keys)
if orig_w < crop_width or orig_h < crop_height:
log.warning(
f"Data size ({orig_w}, {orig_h}) is smaller than crop size ({crop_width}, {crop_height}), skip the crop augmentation."
)
coin_flip = torch.rand(1).item() <= p
if coin_flip and crop_width <= orig_w and crop_height <= orig_h:
data_dict = self.crop_op(data_dict)
return data_dict
data_dict = self.resize_op(data_dict)
data_dict = self.crop_op(data_dict)
return data_dict
class CenterCrop(Augmentor):
def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None:
super().__init__(input_keys, output_keys, args)
def __call__(self, data_dict: dict) -> dict:
r"""Performs center crop.
Args:
data_dict (dict): Input data dict
Returns:
data_dict (dict): Output dict where images are center cropped.
We also save the cropping parameters in the aug_params dict
so that it will be used by other transforms.
"""
assert (self.args is not None) and ("size" in self.args), "Please specify size in args"
img_size = obtain_augmentation_size(data_dict, self.args)
width, height = img_size
orig_w, orig_h = obtain_image_size(data_dict, self.input_keys)
for key in self.input_keys:
data_dict[key] = transforms_F.center_crop(data_dict[key], [height, width])
# We also add the aug params we use. This will be useful for other transforms
crop_x0 = (orig_w - width) // 2
crop_y0 = (orig_h - height) // 2
cropping_params = {
"resize_w": orig_w,
"resize_h": orig_h,
"crop_x0": crop_x0,
"crop_y0": crop_y0,
"crop_w": width,
"crop_h": height,
}
if "aug_params" not in data_dict:
data_dict["aug_params"] = dict()
data_dict["aug_params"]["cropping"] = cropping_params
data_dict["padding_mask"] = torch.zeros((1, cropping_params["crop_h"], cropping_params["crop_w"]))
return data_dict
class RandomCrop(Augmentor):
def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None:
super().__init__(input_keys, output_keys, args)
def __call__(self, data_dict: dict) -> dict:
r"""Performs random crop.
Args:
data_dict (dict): Input data dict
Returns:
data_dict (dict): Output dict where images are center cropped.
We also save the cropping parameters in the aug_params dict
so that it will be used by other transforms.
"""
img_size = obtain_augmentation_size(data_dict, self.args)
width, height = img_size
orig_w, orig_h = obtain_image_size(data_dict, self.input_keys)
# Obtaining random crop coords
try:
crop_x0 = int(torch.randint(0, orig_w - width + 1, size=(1,)).item())
crop_y0 = int(torch.randint(0, orig_h - height + 1, size=(1,)).item())
except Exception as e:
logging.warning(
f"Random crop failed. Performing center crop, original_size(wxh): {orig_w}x{orig_h}, random_size(wxh): {width}x{height}"
)
for key in self.input_keys:
data_dict[key] = transforms_F.center_crop(data_dict[key], [height, width])
crop_x0 = (orig_w - width) // 2
crop_y0 = (orig_h - height) // 2
# We also add the aug params we use. This will be useful for other transforms
cropping_params = {
"resize_w": orig_w,
"resize_h": orig_h,
"crop_x0": crop_x0,
"crop_y0": crop_y0,
"crop_w": width,
"crop_h": height,
}
if "aug_params" not in data_dict:
data_dict["aug_params"] = dict()
data_dict["aug_params"]["cropping"] = cropping_params
# We must perform same random cropping for all input keys
for key in self.input_keys:
data_dict[key] = transforms_F.crop(data_dict[key], crop_y0, crop_x0, height, width)
return data_dict
class HorizontalFlip(Augmentor):
def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None:
super().__init__(input_keys, output_keys, args)
def __call__(self, data_dict: dict) -> dict:
r"""Performs horizontal flipping.
Args:
data_dict (dict): Input data dict
Returns:
data_dict (dict): Output dict where images are center cropped.
"""
flip_enabled = getattr(self.args, "enabled", True)
if flip_enabled:
p = getattr(self.args, "prob", 0.5)
coin_flip = torch.rand(1).item() > p
for key in self.input_keys:
if coin_flip:
data_dict[key] = transforms_F.hflip(data_dict[key])
return data_dict
class Normalize(Augmentor):
def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None:
super().__init__(input_keys, output_keys, args)
def __call__(self, data_dict: dict) -> dict:
r"""Performs data normalization.
Args:
data_dict (dict): Input data dict
Returns:
data_dict (dict): Output dict where images are center cropped.
"""
assert self.args is not None, "Please specify args"
mean = self.args["mean"]
std = self.args["std"]
for key in self.input_keys:
if isinstance(data_dict[key], torch.Tensor):
data_dict[key] = data_dict[key].to(dtype=torch.get_default_dtype()).div(255)
else:
data_dict[key] = transforms_F.to_tensor(data_dict[key]) # division by 255 is applied in to_tensor()
data_dict[key] = transforms_F.normalize(tensor=data_dict[key], mean=mean, std=std)
return data_dict
class ReflectionPadding(Augmentor):
def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None:
super().__init__(input_keys, output_keys, args)
def __call__(self, data_dict: dict) -> dict:
r"""Performs reflection padding. This function also returns a padding mask.
Args:
data_dict (dict): Input data dict
Returns:
data_dict (dict): Output dict where images are center cropped.
"""
assert self.args is not None, "Please specify args in augmentation"
if self.output_keys is None:
self.output_keys = self.input_keys
# Obtain image and augmentation sizes
orig_w, orig_h = obtain_image_size(data_dict, self.input_keys)
target_size = obtain_augmentation_size(data_dict, self.args)
assert isinstance(target_size, (tuple, omegaconf.listconfig.ListConfig)), "Please specify target size as tuple"
target_w, target_h = target_size
target_w = int(target_w)
target_h = int(target_h)
# Calculate padding vals
padding_left = int((target_w - orig_w) / 2)
padding_right = target_w - orig_w - padding_left
padding_top = int((target_h - orig_h) / 2)
padding_bottom = target_h - orig_h - padding_top
padding_vals = [padding_left, padding_top, padding_right, padding_bottom]
for inp_key, out_key in zip(self.input_keys, self.output_keys):
if max(padding_vals[0], padding_vals[2]) >= orig_w or max(padding_vals[1], padding_vals[3]) >= orig_h:
# In this case, we can't perform reflection padding. This is because padding values
# are larger than the image size. So, perform edge padding instead.
data_dict[out_key] = transforms_F.pad(data_dict[inp_key], padding_vals, padding_mode="edge")
else:
# Perform reflection padding
data_dict[out_key] = transforms_F.pad(data_dict[inp_key], padding_vals, padding_mode="reflect")
if out_key != inp_key:
del data_dict[inp_key]
# Return padding_mask when padding is performed.
# Padding mask denotes which pixels are padded.
padding_mask = torch.ones((1, target_h, target_w))
padding_mask[:, padding_top : (padding_top + orig_h), padding_left : (padding_left + orig_w)] = 0
data_dict["padding_mask"] = padding_mask
data_dict["image_size"] = torch.tensor([target_h, target_w, orig_h, orig_w], dtype=torch.float)
return data_dict
class ResizeSmallestSide(Augmentor):
def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None:
super().__init__(input_keys, output_keys, args)
def __call__(self, data_dict: dict) -> dict:
r"""Performs resizing to smaller side
Args:
data_dict (dict): Input data dict
Returns:
data_dict (dict): Output dict where images are resized
"""
if self.output_keys is None:
self.output_keys = self.input_keys
assert self.args is not None, "Please specify args in augmentations"
for inp_key, out_key in zip(self.input_keys, self.output_keys):
out_size = obtain_augmentation_size(data_dict, self.args)
assert isinstance(out_size, int), "Arg size in resize should be an integer"
data_dict[out_key] = transforms_F.resize(
data_dict[inp_key],
size=out_size, # type: ignore
interpolation=getattr(self.args, "interpolation", transforms_F.InterpolationMode.BICUBIC),
antialias=True,
)
if out_key != inp_key:
del data_dict[inp_key]
return data_dict
class ResizeLargestSide(Augmentor):
def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None:
super().__init__(input_keys, output_keys, args)
def __call__(self, data_dict: dict) -> dict:
r"""Performs resizing to larger side
Args:
data_dict (dict): Input data dict
Returns:
data_dict (dict): Output dict where images are resized
"""
if self.output_keys is None:
self.output_keys = self.input_keys
assert self.args is not None, "Please specify args in augmentations"
for inp_key, out_key in zip(self.input_keys, self.output_keys):
out_size = obtain_augmentation_size(data_dict, self.args)
assert isinstance(out_size, int), "Arg size in resize should be an integer"
orig_w, orig_h = obtain_image_size(data_dict, self.input_keys)
scaling_ratio = min(out_size / orig_w, out_size / orig_h)
target_size = [int(scaling_ratio * orig_h), int(scaling_ratio * orig_w)]
data_dict[out_key] = transforms_F.resize(
data_dict[inp_key],
size=target_size,
interpolation=getattr(self.args, "interpolation", transforms_F.InterpolationMode.BICUBIC),
antialias=True,
)
if out_key != inp_key:
del data_dict[inp_key]
return data_dict
class ResizeSmallestSideAspectPreserving(Augmentor):
def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None:
super().__init__(input_keys, output_keys, args)
def __call__(self, data_dict: dict) -> dict:
r"""Performs aspect-ratio preserving resizing.
Image is resized to the dimension which has the smaller ratio of (size / target_size).
First we compute (w_img / w_target) and (h_img / h_target) and resize the image
to the dimension that has the smaller of these ratios.
Args:
data_dict (dict): Input data dict
Returns:
data_dict (dict): Output dict where images are resized
"""
if self.output_keys is None:
self.output_keys = self.input_keys
assert self.args is not None, "Please specify args in augmentations"
img_size = obtain_augmentation_size(data_dict, self.args)
assert isinstance(
img_size, (tuple, omegaconf.listconfig.ListConfig)
), f"Arg size in resize should be a tuple, get {type(img_size)}, {img_size}"
img_w, img_h = img_size
orig_w, orig_h = obtain_image_size(data_dict, self.input_keys)
scaling_ratio = max((img_w / orig_w), (img_h / orig_h))
target_size = (int(scaling_ratio * orig_h + 0.5), int(scaling_ratio * orig_w + 0.5))
assert (
target_size[0] >= img_h and target_size[1] >= img_w
), f"Resize error. orig {(orig_w, orig_h)} desire {img_size} compute {target_size}"
for inp_key, out_key in zip(self.input_keys, self.output_keys):
data_dict[out_key] = transforms_F.resize(
data_dict[inp_key],
size=target_size, # type: ignore
interpolation=getattr(self.args, "interpolation", transforms_F.InterpolationMode.BICUBIC),
antialias=True,
)
if out_key != inp_key:
del data_dict[inp_key]
return data_dict
class ResizeLargestSideAspectPreserving(Augmentor):
def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None:
super().__init__(input_keys, output_keys, args)
def __call__(self, data_dict: dict) -> dict:
r"""Performs aspect-ratio preserving resizing.
Image is resized to the dimension which has the larger ratio of (size / target_size).
First we compute (w_img / w_target) and (h_img / h_target) and resize the image
to the dimension that has the larger of these ratios.
Args:
data_dict (dict): Input data dict
Returns:
data_dict (dict): Output dict where images are resized
"""
if self.output_keys is None:
self.output_keys = self.input_keys
assert self.args is not None, "Please specify args in augmentations"
img_size = obtain_augmentation_size(data_dict, self.args)
assert isinstance(
img_size, (tuple, omegaconf.listconfig.ListConfig)
), f"Arg size in resize should be a tuple, get {type(img_size)}, {img_size}"
img_w, img_h = img_size
orig_w, orig_h = obtain_image_size(data_dict, self.input_keys)
scaling_ratio = min((img_w / orig_w), (img_h / orig_h))
target_size = (int(scaling_ratio * orig_h + 0.5), int(scaling_ratio * orig_w + 0.5))
assert (
target_size[0] <= img_h and target_size[1] <= img_w
), f"Resize error. orig {(orig_w, orig_h)} desire {img_size} compute {target_size}"
for inp_key, out_key in zip(self.input_keys, self.output_keys):
data_dict[out_key] = transforms_F.resize(
data_dict[inp_key],
size=target_size, # type: ignore
interpolation=getattr(self.args, "interpolation", transforms_F.InterpolationMode.BICUBIC),
antialias=True,
)
if out_key != inp_key:
del data_dict[inp_key]
return data_dict
|