File size: 32,527 Bytes
b6af722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
from typing import Callable, List, Optional

import torch
from megatron.core import ModelParallelConfig

from cosmos_predict1.autoregressive.configs.base.model import ModelConfig, TrainingModelConfig
from cosmos_predict1.autoregressive.configs.base.tokenizer import (
    TextTokenizerConfig,
    TokenizerConfig,
    VideoTokenizerConfig,
    create_discrete_video_fsq_tokenizer_state_dict_config,
)
from cosmos_predict1.autoregressive.tokenizer.image_text_tokenizer import ImageTextTokenizer
from cosmos_predict1.autoregressive.tokenizer.text_tokenizer import TextTokenizer
from cosmos_predict1.autoregressive.training.model import AutoRegressiveTrainingModel
from cosmos_predict1.utils import log
from cosmos_predict1.utils.config import EMAConfig
from cosmos_predict1.utils.lazy_config import LazyCall as L

# Common architecture specifications
BASE_CONFIG = {"n_kv_heads": 8, "norm_type": "rmsnorm", "norm_eps": 1e-5, "ffn_hidden_size": 14336}
COSMOS_ARCHITECTURES = {
    "1b": {
        "n_layers": 16,
        "dim": 2048,
        "n_heads": 32,
    },
    "4b": {
        "n_layers": 16,
        "dim": 4096,
        "n_heads": 32,
    },
    "12b": {
        "n_layers": 40,
        "dim": 5120,
        "n_heads": 32,
        "head_dim": 128,
    },
}

COSMOS_YARN_CONFIG = {
    "original_latent_shape": [3, 40, 64],
    "apply_yarn": True,
    "yarn_beta_fast": 4,
    "yarn_beta_slow": 1,
    "yarn_scale": 2,
}

# Llama3 architecture specifications for different model sizes
LLAMA3_ARCHITECTURES = {
    "8b": {
        "n_layers": 32,
        "dim": 4096,
        "n_heads": 32,
        "ffn_hidden_size": 14336,
    },
}
# Llama3.1 uses YaRN for long context support (context of 128k tokens)
LLAMA_YARN_CONFIG = {
    "apply_yarn": True,
    "yarn_scale": 8,
    "yarn_beta_fast": 4,
    "yarn_beta_slow": 1,
}

# Mistral architecture specifications for different model sizes
MISTRAL_ARCHITECTURES = {
    "12b": {
        "n_layers": 40,
        "dim": 5120,
        "n_heads": 32,
        "ffn_hidden_size": 14336,
        "head_dim": 128,
    },
}

PIXTRAL_VISION_ARCHITECTURES = {
    "12b": {"vision_encoder": "pixtral-12b-vit", "mm_projector": "mlp"},
}


def get_model_arch_specs(model_size: str, model_family: str = "mistral", pretrained: bool = False) -> dict:
    """
    Get the model architecture specifications for the given model size, model family and pretrained status.

    Args:
        model_size (str): Model size. Choices: "1b", "3b", "4b", "7b", etc.
        model_family (str): Model family. Choices: "llama", "llama3", "llama3.1", "mistral"
        pretrained (bool): Whether to load pretrained weights.

    Returns:
        dict: A dictionary containing the model architecture specifications.
    """
    arch_specs = copy.deepcopy(BASE_CONFIG)
    model_size = model_size.lower()
    if model_family.startswith("cosmos"):
        arch_specs.update(COSMOS_ARCHITECTURES[model_size])
    elif model_family.startswith("llama"):
        arch_specs.update(LLAMA3_ARCHITECTURES[model_size])
    elif model_family in ["mistral", "pixtral"]:
        arch_specs.update(MISTRAL_ARCHITECTURES[model_size])
        if model_family == "pixtral":
            arch_specs.update(PIXTRAL_VISION_ARCHITECTURES[model_size])
    else:
        raise ValueError(f"Model family {model_family} is not supported.")

    if pretrained:
        if model_family == "cosmos":
            if model_size == "12b":
                arch_specs.update(COSMOS_YARN_CONFIG)
                log.debug(f"Using YaRN for RoPE extension with config: {COSMOS_YARN_CONFIG}")
            else:
                pass
        elif model_family in ["llama", "llama3"]:
            pretrained_specs = {
                "rope_theta": 500000,
                "max_seq_len": 8192,
                "vocab_size": 128256,
            }
            arch_specs.update(pretrained_specs)
        elif model_family == "llama3.1":
            pretrained_specs = {
                "rope_theta": 500000,
                "max_seq_len": 131072,
                "original_seq_len": 8192,
                "vocab_size": 128256,
                **LLAMA_YARN_CONFIG,
            }
            arch_specs.update(pretrained_specs)
        elif model_family == "mistral":
            assert model_size == "12b", "We only support Mistral-Nemo-12B model."
            pretrained_specs = {
                "rope_theta": 1000000,
                "max_seq_len": 128000,
                "vocab_size": 131072,
            }
            arch_specs.update(pretrained_specs)
        elif model_family == "pixtral":
            assert model_size == "12b", "We only support Pixtral 12B model."
            pretrained_specs = {"rope_theta": 1000000000, "max_seq_len": 128000, "vocab_size": 131072}
            arch_specs.update(pretrained_specs)
        else:
            raise ValueError(f"Model family {model_family} doesn't have a pretrained config.")

    return arch_specs


def create_text_model_config(
    model_ckpt_path: str,
    tokenizer_path: str,
    tensor_model_parallel_size: int = 1,
    model_family: str = "mistral",
    model_size: str = "12b",
    is_instruct_model: bool = True,
    max_seq_len: int = None,
    max_batch_size: int = 1,
    rope_dim: str = "1D",
    add_special_tokens: bool = True,
    pytorch_rope_version: str = None,
) -> dict:
    """Create a text model for training or inference.
    Args:
        model_ckpt_path (str): Path to the model checkpoint.
        tokenizer_path (str): Path to the tokenizer folder.
        tensor_model_parallel_size (int): Number of tensor model parallel groups.
        model_family (str): Model family. Choices: "llama", "llama3", "llama3.1", "mistral".
        model_size (str): Model size. Choices: "1b", "3b", "4b", "7b", "8b", "72b", etc.
        is_instruct_model (bool): Whether the model is an instruct model.
        inference (bool): Whether to create the model for inference.
        max_seq_len (int): Maximum sequence length.
        max_batch_size (int): Maximum batch size.
        rope_dim (str): RoPE dimension. Choices: "1D", "3D".
        add_special_tokens (bool): Whether to add special tokens.
    Returns:
        dict: A dictionary containing the model configuration, which can be used to instantiate the model object.
    """
    # Model size specific parameters
    model_arch_specs = get_model_arch_specs(model_family=model_family, model_size=model_size, pretrained=True)
    if max_seq_len is not None:
        # Override the max_seq_len if provided
        model_arch_specs["max_seq_len"] = max_seq_len
    if pytorch_rope_version is not None:
        model_arch_specs["pytorch_rope_version"] = pytorch_rope_version
    model_config = ModelConfig(
        max_batch_size=max_batch_size,
        precision="bfloat16",
        ckpt_path=model_ckpt_path,
        use_qk_normalization=False,
        tensor_model_parallel_size=tensor_model_parallel_size,
        rope_dim=rope_dim,
        **model_arch_specs,
    )

    tokenizer_config = TokenizerConfig(
        text_tokenizer=TextTokenizerConfig(
            config=L(TextTokenizer)(
                model_family=model_family,
                is_instruct_model=is_instruct_model,
                local_path=tokenizer_path,
            ),
            data_key="text",
            tokenizer_offset=model_config.vocab_size,
            tokenize_here=False,
            vocab_size=model_config.vocab_size,
        ),
        seq_len=model_config.max_seq_len,
        training_type="text_only",
        add_special_tokens=add_special_tokens,
    )
    return model_config, tokenizer_config


def create_vision_language_model_config(
    model_ckpt_path: str,
    tokenizer_ckpt_path: str,
    tensor_model_parallel_size: int = 1,
    model_family: str = "pixtral",
    model_size: str = "12b",
    is_instruct_model: bool = True,
    max_batch_size: int = 1,
    rope_dim: str = "1D",
    add_special_tokens: bool = True,
    max_seq_len: int = None,
    vision_encoder_in_channels: int = 3,
    fuse_qkv: bool = False,
    pytorch_rope_version: str = None,
) -> dict:
    """Create a vision-language model for training or inference.
    Args:
        model_ckpt_path (str): Path to the model checkpoint.
        tokenizer_ckpt_path (str): Path to the tokenizer checkpoint.
        tensor_model_parallel_size (int): Number of tensor model parallel groups.
        model_family (str): Model family. Choices: "pixtral".
        model_size (str): Model size. Choices: "12b".
        is_instruct_model (bool): Whether the model is an instruct model.
        rope_dim (str): RoPE dimension. Choices: "1D".
        add_special_tokens (bool): Whether to add special tokens.
        max_seq_len (int): Maximum sequence length.
        vision_encoder_in_channels (int): Number of channels in the input image for the vision encoder. Default is 3, you can specify to int larger than 3. E.g. if you have 4 channel images where last channel is binary mask, set this to 4.
        fuse_qkv (bool): Whether to fuse the QKV linear layers.
    Returns:
        dict: A dictionary containing the model configuration, which can be used to instantiate the model object.
    """
    # Model size specific parameters
    model_arch_specs = get_model_arch_specs(model_family=model_family, model_size=model_size, pretrained=True)
    if max_seq_len is not None:
        # Override the max_seq_len if provided
        model_arch_specs["max_seq_len"] = max_seq_len
    if pytorch_rope_version is not None:
        model_arch_specs["pytorch_rope_version"] = pytorch_rope_version

    model_config = ModelConfig(
        max_batch_size=max_batch_size,
        precision="bfloat16",
        ckpt_path=model_ckpt_path,
        use_qk_normalization=False,
        tensor_model_parallel_size=tensor_model_parallel_size,
        rope_dim=rope_dim,
        vision_encoder_in_channels=vision_encoder_in_channels,
        fuse_qkv=fuse_qkv,
        **model_arch_specs,
    )
    # Vision-language tokenizer
    tokenizer_config = TokenizerConfig(
        text_tokenizer=TextTokenizerConfig(
            config=L(ImageTextTokenizer)(
                model_family=model_family,
                is_instruct_model=is_instruct_model,
                image_processor_path=tokenizer_ckpt_path,
                tokenizer_path=tokenizer_ckpt_path,
            ),
            data_key="image_text_interleaved",
            tokenizer_offset=model_config.vocab_size,
            tokenize_here=False,
            vocab_size=model_config.vocab_size,
        ),
        seq_len=model_config.max_seq_len,
        training_type="image_text_interleaved",
        add_special_tokens=add_special_tokens,
    )
    return model_config, tokenizer_config


def create_video2world_model_config(
    model_ckpt_path: str,
    tokenizer_ckpt_path: str,
    tensor_model_parallel_size: int = 1,
    model_family: str = "cosmos",
    model_size: str = "4b",
    pixel_chunk_duration: int = 9,
    num_video_frames: int = 36,
    compression_ratio: List[int] = [8, 16, 16],
    original_seq_len: int = 8192,
    num_condition_latents_t: int = 1,
    num_tokens_to_ignore: int = -1,
    batch_size: int = 2,
    video_tokenizer_config_creator: Callable = create_discrete_video_fsq_tokenizer_state_dict_config,
    rope_dim: str = "3D",
    add_special_tokens: bool = True,
    video_height: int = 384,
    video_width: int = 640,
    use_qk_normalization: bool = True,
    insert_cross_attn: bool = False,
    insert_cross_attn_every_k_layers: int = 1,
    context_dim: int = 1024,
    training_type: str = "video_to_video",
    pad_to_multiple_of: Optional[int] = 64,
    vocab_size: int = 64000,
    apply_abs_pos_emb: bool = False,
) -> dict:
    """Create a video-to-world model config.
    Args:
        tensor_model_parallel_size (int): Number of tensor model parallel groups.
        model_family (str): Model family. Choices: "llama", "llama3", "llama3.1", "mistral".
        model_size (str): Model size. Choices: "1b", "8b", "3b".
        pixel_chunk_duration (int): Number of frames in each chunk.
        num_video_frames (int): Number of video frames.
        compression_ratio (List[int]): Compression ratio for the video frames. Choices: [8, 16, 16] or [4, 8, 8].
        original_seq_len (int): Original sequence length.
        apply_yarn (bool): Whether to apply YaRN for long context scaling.
        yarn_beta_fast (Optional[int]): Fast beta for YaRN.
        yarn_beta_slow (Optional[int]): Slow beta for YaRN.
        yarn_scale (Optional[int]): Scale factor for ctx extension.
        use_qk_normalization (bool): Whether to use Query-Key normalization.
        training_type (str): Type of training task.
        batch_size (int): Batch size.
        video_tokenizer_config_creator (Callable): Method that takes "pixel_chunk_duration: int" and "version: str" as arguments and returns video tokenizer config
        video_tokenizer_version (str): Version of the video tokenizer.
        num_condition_latents_t (int): Number of conditioning latent channels
        num_tokens_to_ignore (int) = Number of tokens to ignore. This takes the precedence
        video_height (int): Height of the video frame. Defaults to 384.
        video_width (int): Width of the video frame. Defaults to 640.
        rope_dim (str): RoPE dimension. Choices: "1D", "3D".
        add_special_tokens (bool): Whether to add special tokens, use False for 2D/3D RoPE.
        pad_to_multiple_of (int): Pad the token sequence length to the nearest multiple of this number. Defaults to 64.
        vocab_size (int): Vocabulary size.
        apply_abs_pos_emb (bool): Whether to apply absolute positional embeddings.
    Returns:
        dict: A dictionary containing the model configuration representing the model object, can be instantiated.
    """
    assert (
        pixel_chunk_duration % compression_ratio[0] == 1
    ), f"pixel_chunk_duration({pixel_chunk_duration}) should be k*n + 1 (k={compression_ratio[0]})"
    latent_chunk_duration = (pixel_chunk_duration - 1) // compression_ratio[0] + 1
    latent_height = video_height // compression_ratio[1]
    latent_width = video_width // compression_ratio[2]
    # Do some math to compute the video latent shape and sequence length
    assert (
        num_video_frames % pixel_chunk_duration == 0
    ), f"num_video_frames {num_video_frames} should be divisible by pixel_chunk_duration {pixel_chunk_duration}"
    video_latent_shape = [
        num_video_frames // pixel_chunk_duration * latent_chunk_duration,
        latent_height,
        latent_width,
    ]
    # product of video_latent_shape
    num_token_video_latent = video_latent_shape[0] * video_latent_shape[1] * video_latent_shape[2]
    if add_special_tokens:
        seq_len = num_token_video_latent + 3  # Sequence length per batch, max_seq_len + 3
        seq_len = (seq_len + 63) // 64 * 64  # Round up to multiple of 64
    # for text to video, we need to add <bov> token to indicate the start of the video
    elif training_type == "text_to_video":
        seq_len = num_token_video_latent + 1
    else:
        seq_len = num_token_video_latent

    if seq_len % pad_to_multiple_of != 0:
        # Round up to the nearest multiple of pad_to_multiple_of
        seq_len = ((seq_len + pad_to_multiple_of - 1) // pad_to_multiple_of) * pad_to_multiple_of

    # Model size specific parameters
    model_arch_specs = get_model_arch_specs(model_family=model_family, model_size=model_size, pretrained=True)

    # Whether skip the loss for first chunk or not, note the first token is already skipped when computing the loss
    # If num_tokens_to_ignore is specified, use it.
    # Else compute it from num_condition_latents_t
    if num_tokens_to_ignore < 0:
        num_tokens_to_ignore = latent_height * latent_width * num_condition_latents_t
        if not add_special_tokens and num_condition_latents_t > 0:
            # If there are no special tokens (bov), do a -1 so that you can compute the loss
            # from the first token of the next chunk
            num_tokens_to_ignore -= 1

    model_config = ModelConfig(
        video_height=video_height,
        video_width=video_width,
        max_seq_len=seq_len,
        max_batch_size=batch_size,
        precision="bfloat16",
        ckpt_path=model_ckpt_path,
        use_qk_normalization=use_qk_normalization,
        vocab_size=64000,
        original_seq_len=original_seq_len,
        tensor_model_parallel_size=tensor_model_parallel_size,
        video_latent_shape=video_latent_shape,
        num_video_frames=num_video_frames,
        rope_dim=rope_dim,
        pad_to_multiple_of=pad_to_multiple_of,
        insert_cross_attn=insert_cross_attn,
        insert_cross_attn_every_k_layers=insert_cross_attn_every_k_layers,
        context_dim=context_dim,
        apply_abs_pos_emb=apply_abs_pos_emb,
        **model_arch_specs,
    )

    video_tokenizer_config = video_tokenizer_config_creator(
        tokenizer_ckpt_path, pixel_chunk_duration, compression_ratio
    )
    tokenizer_config = TokenizerConfig(
        text_tokenizer=None,
        video_tokenizer=VideoTokenizerConfig(
            config=video_tokenizer_config,
            data_key="video",
            tokenizer_offset=0,  # Since there is no text embeddings in the model. Note this only apply when the model is trained from scratch. If we use text pretrained model, the offset will be vocab_size of text token.
            tokenize_here=True,
            max_seq_len=num_token_video_latent,
            vocab_size=vocab_size,
        ),
        seq_len=seq_len,
        training_type=training_type,
        add_special_tokens=add_special_tokens,
        pad_to_multiple_of=pad_to_multiple_of,
    )
    return model_config, tokenizer_config


def create_video2world_model(
    tensor_model_parallel_size: int = 1,
    context_parallel_size: int = 1,
    shard_checkpoint: bool = False,
    model_family: str = "cosmos",
    model_size: str = "1b",
    backend: str = "pytorch",
    pixel_chunk_duration: int = 9,
    num_video_frames: int = 36,
    compression_ratio: List[int] = [8, 16, 16],
    original_seq_len: int = 8192,
    apply_yarn: bool = False,
    yarn_beta_fast: Optional[int] = None,
    yarn_beta_slow: Optional[int] = None,
    yarn_scale: Optional[int] = None,
    num_condition_latents_t: int = 1,
    num_tokens_to_ignore: int = -1,
    batch_size: int = 1,
    fsdp_enabled: bool = False,
    act_ckpt_enabled: bool = False,
    video_tokenizer_config_creator: Callable = create_discrete_video_fsq_tokenizer_state_dict_config,
    rope_dim: str = "3D",
    add_special_tokens: bool = False,
    video_height: int = 384,
    video_width: int = 640,
    original_latent_shape: Optional[List[int]] = None,
    use_qk_normalization: bool = True,
    sequence_parallel: bool = False,
    insert_cross_attn: bool = False,
    insert_cross_attn_every_k_layers: int = 1,
    context_dim: int = 1024,
    finetune_layers_with_cross_attn: bool = False,
    finetune_layers_without_cross_attn: bool = False,
    use_action_condition: bool = False,
    action_embedding_mode: Optional[str] = "mlp",
    action_dim: int = 8,  # ACTION_DIM,
    action_embedding_dim: int = 1024,
    group_causal_mask_mode: Optional[str] = None,
    training_type: str = "video_to_video",
    pad_to_multiple_of: Optional[int] = 1,
    z_loss_coeff: float = 1e-4,
    temporal_overlap: int = 0,
    embedding_dropout: float = 0.0,
    insert_medusa_head: bool = False,
    ft_medusa_option: str = "fft",
    medusa_num_heads: int = 7,
    medusa_num_layers: int = 1,
    medusa_concat_heads: bool = True,
    fuse_qkv: bool = False,
    zero_init_cross_attn_proj: bool = False,
    concat_action_to_context: bool = False,
    tokenizer_ckpt_path: str = "checkpoints/Cosmos-1.0-Tokenizer-DV8x16x16/ema.jit",
) -> dict:
    """Create a video-to-video model for training.
    Args:
        tensor_model_parallel_size (int): Number of tensor model parallel groups.
        context_parallel_size (int): Number of context parallel groups.
        model_family (str): Model family. Choices: "llama", "llama3", "llama3.1", "mistral".
        model_size (str): Model size. Choices: "1b", "8b", "3b".
        backend (str): Backend for the model. Choices: "pytorch", "transformer_engine".
        pixel_chunk_duration (int): Number of frames in each chunk.
        num_video_frames (int): Number of video frames.
        compression_ratio (List[int]): Compression ratio for the video frames. Choices: [8, 16, 16] or [4, 8, 8].
        original_seq_len (int): Original sequence length.
        apply_yarn (bool): Whether to apply YaRN for long context scaling.
        yarn_beta_fast (Optional[int]): Fast beta for YaRN.
        yarn_beta_slow (Optional[int]): Slow beta for YaRN.
        yarn_scale (Optional[int]): Scale factor for ctx extension.
        fsdp_enabled (bool): Whether Fully Sharded Data Parallel (FSDP) is enabled.
        act_ckpt_enabled (bool): Whether activation checkpointing is enabled.
        use_qk_normalization (bool): Whether to use Query-Key normalization.
        training_type (str): Type of training task.
        batch_size (int): Batch size.
        video_tokenizer_config_creator (Callable): Method that takes "pixel_chunk_duration: int" and "version: str" as arguments and returns video tokenizer config
        video_tokenizer_version (str): Version of the video tokenizer.
        num_condition_latents_t (int): Number of conditioning latent channels
        num_tokens_to_ignore (int) = Number of tokens to ignore. This takes the precedence
        video_height (int): Height of the video frame. Defaults to 384.
        video_width (int): Width of the video frame. Defaults to 640.
        rope_dim (str): RoPE dimension. Choices: "1D", "2D", "3D".
        add_special_tokens (bool): Whether to add special tokens, use False for 2D/3D RoPE.
        original_latent_shape (list): Original latent shape before RoPE scaling.
        sequence_parallel (bool): Whether to enable sequence parallelism.
        insert_cross_attn (bool): Whether to insert the cross-attention layers after each multi-head self-attention (MSA) layer.
        insert_cross_attn_every_k_layers (int): Insert cross-attention layers every k TransformerLayers.
        context_dim (Optional[int]): The dimensionality of cross-attention embedding, e.g., T5 embed feature dim.
        finetune_layers_with_cross_attn (bool): Whether to finetune Transformer layers w/ CA (cross-attn).
        finetune_layers_without_cross_attn (bool): Whether to finetune Transformer layers w/o CA (cross-attn).
        use_action_condition (bool): Whether to use action condition.
        action_embedding_mode (Optional[str]): The mode of the robot action embedding. Choices: "matrix", "mlp".
        action_dim (int): Dimension of the raw robot action tensor (e.g., 7 for DROID, [Δx, Δy, Δz, rx, ry, rz, gripper_open]).
        action_embedding_dim (int): Dimension of the action embedding.
        group_causal_mask_mode (Optional[str]): The mode of the group causal mask. Choices: "causal", "group_diagonal".
        pad_to_multiple_of (int): Pad the token sequence length to the nearest multiple of this number. Defaults to 64.
        z_loss_coeff (float): Coefficient for the z loss.
        temporal_overlap (int): Temporal overlap in the latent space.
        embedding_dropout (float): Dropout rate for the embeddings.
        insert_medusa_head (bool): Whether to insert the Medusa head.
        ft_medusa_option (str): Options on which layers to finetune, choices like:
            "fft": fully fine-tune both medusa heads and all LLM backbone;
            "head": fine-tune medusa heads;
            "head_out": fine-tune medusa heads, and the output layer;
            "head_out_last_k_layer": fine-tune medusa heads, the output layer, and the last k layer(s) of the LLM backbone.
        medusa_num_heads (int): Number of heads in the Medusa head.
        medusa_num_layers (int): Number of layers in the Medusa head.
        medusa_concat_heads (bool): Whether to concatenate multiple medusa heads into fused matrix, only applicable when medusa_num_layers = 1.
        fuse_qkv (bool): Whether to fuse the QKV linear layers.
        zero_init_cross_attn_proj (bool): Whether to zero-initialize the cross-attention projection weights (default False).
        concat_action_to_context (bool): Whether to concatenate the action embedding to the context (default False).
    Returns:
        dict: A dictionary containing the model configuration representing the model object, can be instantiated.
    """
    assert (
        pixel_chunk_duration % compression_ratio[0] == 1
    ), f"pixel_chunk_duration({pixel_chunk_duration}) should be k*n + 1 (k={compression_ratio[0]})"
    latent_chunk_duration = (pixel_chunk_duration - 1) // compression_ratio[0] + 1
    latent_height = video_height // compression_ratio[1]
    latent_width = video_width // compression_ratio[2]
    # Compute the video latent shape and sequence length
    if temporal_overlap == 0:
        assert (
            num_video_frames % pixel_chunk_duration == 0
        ), f"num_video_frames {num_video_frames} should be divisible by pixel_chunk_duration {pixel_chunk_duration}"
        video_latent_shape = [
            num_video_frames // pixel_chunk_duration * latent_chunk_duration,
            latent_height,
            latent_width,
        ]

    else:
        # Calculate temporal overlap in the latent space
        temporal_overlap_latent = temporal_overlap // compression_ratio[0]

        # Calculate the effective number of latent chunks for the video
        latent_chunks = (num_video_frames - temporal_overlap) // (pixel_chunk_duration - temporal_overlap)

        # Compute the total duration of the latent chunks, accounting for overlap
        effective_latent_duration = (
            latent_chunk_duration - temporal_overlap_latent
        ) * latent_chunks + temporal_overlap_latent

        # Define the shape of the video in the latent space
        video_latent_shape = [
            effective_latent_duration,  # Temporal dimension
            latent_height,  # Height in the latent space
            latent_width,  # Width in the latent space
        ]

    # product of video_latent_shape
    num_token_video_latent = video_latent_shape[0] * video_latent_shape[1] * video_latent_shape[2]
    if add_special_tokens:
        seq_len = num_token_video_latent + 3  # Sequence length per batch, max_seq_len + 3
        seq_len = (seq_len + 63) // 64 * 64  # Round up to multiple of 64
    # for text to video, we need to add <bov> token to indicate the start of the video
    elif training_type == "text_to_video":
        seq_len = num_token_video_latent + 1
    else:
        seq_len = num_token_video_latent

    if seq_len % pad_to_multiple_of != 0:
        # Round up to the nearest multiple of pad_to_multiple_of
        seq_len = ((seq_len + pad_to_multiple_of - 1) // pad_to_multiple_of) * pad_to_multiple_of

    # Model size specific parameters
    model_arch_specs = get_model_arch_specs(model_family=model_family, model_size=model_size, pretrained=False)

    inference = False  # False for training, True for inference
    # set_parallel_mode = True
    set_parallel_mode = tensor_model_parallel_size > 1
    attention_tp = True

    if context_parallel_size > 1:
        assert backend == "transformer_engine", "Context parallelism is only supported in transformer engine."

    if tensor_model_parallel_size > 1:
        assert set_parallel_mode, "Tensor model parallelism is only supported in parallel mode."

    # Whether skip the loss for first chunk or not, note the first token is already skipped when computing the loss
    # If num_tokens_to_ignore is specified, use it.
    # Else compute it from num_condition_latents_t
    if num_tokens_to_ignore < 0:
        num_tokens_to_ignore = latent_height * latent_width * num_condition_latents_t
        if not add_special_tokens and num_condition_latents_t > 0:
            # If there are no special tokens (bov), do a -1 so that you can compute the loss
            # from the first token of the next chunk
            num_tokens_to_ignore -= 1

    model_config = TrainingModelConfig(
        video_height=video_height,
        video_width=video_width,
        max_seq_len=seq_len,
        max_batch_size=batch_size,
        inference=inference,
        backend=backend,
        precision="bfloat16",
        ema=EMAConfig(enabled=False),
        act_ckpt_enabled=act_ckpt_enabled,
        fsdp_enabled=fsdp_enabled,
        cache_dir=None,
        ckpt_path="checkpoints/Cosmos-Predict1-4B/model.pt",
        use_qk_normalization=use_qk_normalization,
        vocab_size=64000,
        ignore_first_num_tokens=num_tokens_to_ignore,
        apply_yarn=apply_yarn,
        yarn_beta_fast=yarn_beta_fast,
        yarn_beta_slow=yarn_beta_slow,
        original_seq_len=original_seq_len,
        yarn_scale=yarn_scale,
        context_parallel_size=context_parallel_size,
        tensor_model_parallel_size=tensor_model_parallel_size,
        set_parallel_mode=set_parallel_mode,
        attention_tp=attention_tp,
        video_latent_shape=video_latent_shape,
        num_video_frames=num_video_frames,
        rope_dim=rope_dim,
        original_latent_shape=original_latent_shape,
        pad_to_multiple_of=pad_to_multiple_of,
        sequence_parallel=sequence_parallel,
        insert_cross_attn=insert_cross_attn,
        insert_cross_attn_every_k_layers=insert_cross_attn_every_k_layers,
        context_dim=context_dim,
        finetune_layers_with_cross_attn=finetune_layers_with_cross_attn,
        finetune_layers_without_cross_attn=finetune_layers_without_cross_attn,
        use_action_condition=use_action_condition,
        action_embedding_mode=action_embedding_mode,
        action_dim=action_dim,
        action_embedding_dim=action_embedding_dim,
        group_causal_mask_mode=group_causal_mask_mode,
        z_loss_coeff=z_loss_coeff,
        embedding_dropout=embedding_dropout,
        insert_medusa_head=insert_medusa_head,
        ft_medusa_option=ft_medusa_option,
        medusa_num_heads=medusa_num_heads,
        medusa_num_layers=medusa_num_layers,
        medusa_concat_heads=medusa_concat_heads,
        fuse_qkv=fuse_qkv,
        zero_init_cross_attn_proj=zero_init_cross_attn_proj,
        concat_action_to_context=concat_action_to_context,
        **model_arch_specs,
    )

    tokenizer_config = TokenizerConfig(
        text_tokenizer=None,
        video_tokenizer=VideoTokenizerConfig(
            config=video_tokenizer_config_creator(
                ckpt_path=tokenizer_ckpt_path, pixel_chunk_duration=pixel_chunk_duration
            ),
            data_key="video",
            tokenizer_offset=0,
            vocab_size=64000,
            tokenize_here=True,
            max_seq_len=num_token_video_latent,
            temporal_overlap=temporal_overlap,
        ),
        seq_len="${model.model_config.max_seq_len}",
        training_type=training_type,
        add_special_tokens=add_special_tokens,
        pad_to_multiple_of=pad_to_multiple_of,
    )

    model_parallel = ModelParallelConfig(
        bf16=True,
        params_dtype=getattr(torch, "bfloat16"),
    )
    model_parallel.tensor_model_parallel_size = "${model.model_config.tensor_model_parallel_size}"
    model_parallel.context_parallel_size = "${model.model_config.context_parallel_size}"
    model_parallel.sequence_parallel = "${model.model_config.sequence_parallel}"
    return L(AutoRegressiveTrainingModel.build)(
        seed=0,
        train_from_scratch=True,
        model_config=model_config,
        fsdp_checkpointer=None,
        tokenizer_config=tokenizer_config,
        model_parallel=model_parallel,
        shard_checkpoint=shard_checkpoint,
    )