Spaces:
Build error
Build error
File size: 3,187 Bytes
b6af722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from hydra.core.config_store import ConfigStore
from cosmos_predict1.autoregressive.configs.base.callbacks import BASIC_CALLBACKS, VIDEO_TEACHER_FORCING_CALLBACK
from cosmos_predict1.autoregressive.configs.base.dataloader import get_tealrobot_video
from cosmos_predict1.autoregressive.configs.base.optim import LambdaLinearLR
from cosmos_predict1.autoregressive.configs.experiment.video2video.basic import register_experiments
from cosmos_predict1.utils import config, log
from cosmos_predict1.utils.lazy_config import LazyCall as L
from cosmos_predict1.utils.scheduler import WarmupCosineLR
def register_checkpoint(cs):
checkpoint_local = config.CheckpointConfig(
save_iter=5000,
broadcast_via_filesystem=True,
)
cs.store(group="checkpoint", package="checkpoint", name="local", node=checkpoint_local)
def register_callbacks(cs):
cs.store(group="callbacks", package="trainer.callbacks", name="basic", node=BASIC_CALLBACKS)
cs.store(
group="callbacks",
package="trainer.callbacks",
name="video_teacher_forcing",
node=VIDEO_TEACHER_FORCING_CALLBACK,
)
def register_scheduler(cs):
cs.store(
group="scheduler",
package="scheduler",
name="warmup_cosine_lr",
node=L(WarmupCosineLR)(optimizer=None, warmup_iters=5000, lr_decay_iters="${trainer.max_iter}", min_lr=1e-8),
)
cs.store(group="scheduler", package="scheduler", name="lambdalinear", node=LambdaLinearLR)
def register_optimizer(cs):
cs.store(
group="optimizer",
package="optimizer",
name="fused_adamw",
node=L(torch.optim.AdamW)(params=None, lr=1e-3, weight_decay=0.05, fused=True),
)
cs.store(
group="optimizer",
package="optimizer",
name="sgd",
node=L(torch.optim.SGD)(params=None, lr=5e-6, momentum=0.9),
)
def register_training_data(cs):
cs.store(
group="data_train",
package="dataloader_train",
name="tealrobot_video_small",
node=get_tealrobot_video(num_frames=33, video_size=[384, 640]),
)
cs.store(group="data_train", package="dataloader_train", name="tealrobot_video", node=get_tealrobot_video())
def register_configs():
log.info("Registering configs for autoregressive_base")
cs = ConfigStore.instance()
register_callbacks(cs)
register_checkpoint(cs)
register_optimizer(cs)
register_scheduler(cs)
register_training_data(cs)
register_experiments(cs)
|