File size: 9,502 Bytes
b6af722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional, Tuple

import torch
from einops import rearrange
from torch import nn
from torch.distributed import ProcessGroup, get_process_group_ranks
from torchvision import transforms

from cosmos_predict1.diffusion.module.blocks import PatchEmbed
from cosmos_predict1.diffusion.networks.general_dit import GeneralDIT
from cosmos_predict1.utils import log


class DiffusionDecoderGeneralDIT(GeneralDIT):
    def __init__(
        self,
        *args,
        is_diffusion_decoder: bool = True,
        diffusion_decoder_condition_on_sigma: bool = False,
        diffusion_decoder_condition_on_token: bool = False,
        diffusion_decoder_token_condition_voc_size: int = 64000,
        diffusion_decoder_token_condition_dim: int = 32,
        **kwargs,
    ):
        # diffusion decoder setting
        self.is_diffusion_decoder = is_diffusion_decoder
        self.diffusion_decoder_condition_on_sigma = diffusion_decoder_condition_on_sigma
        self.diffusion_decoder_condition_on_token = diffusion_decoder_condition_on_token
        self.diffusion_decoder_token_condition_voc_size = diffusion_decoder_token_condition_voc_size
        self.diffusion_decoder_token_condition_dim = diffusion_decoder_token_condition_dim
        super().__init__(*args, **kwargs)

    def initialize_weights(self):
        # Initialize transformer layers:
        super().initialize_weights()
        if self.diffusion_decoder_condition_on_token:
            nn.init.constant_(self.token_embedder.weight, 0)

    @property
    def is_context_parallel_enabled(self):
        return self.cp_group is not None

    def enable_context_parallel(self, cp_group: ProcessGroup):
        cp_ranks = get_process_group_ranks(cp_group)
        cp_size = len(cp_ranks)
        # Set these attributes for spliting the data after embedding.
        self.cp_group = cp_group
        # Set these attributes for computing the loss.
        self.cp_size = cp_size

        # self.pos_embedder.enable_context_parallel(cp_group)
        self.pos_embedder.cp_group = cp_group

        if self.extra_per_block_abs_pos_emb:
            # self.extra_pos_embedder.enable_context_parallel(cp_group)
            self.extra_pos_embedder.cp_group = cp_group

        # Loop through the model to set up context parallel.
        for block in self.blocks.values():
            for layer in block.blocks:
                if layer.block_type in ["mlp", "ff", "cross_attn", "ca"]:
                    continue
                elif layer.block.attn.backend == "transformer_engine":
                    layer.block.attn.attn_op.set_context_parallel_group(cp_group, cp_ranks, torch.cuda.Stream())

        log.debug(f"[CP] Enable context parallelism with size {cp_size}")

    def disable_context_parallel(self):
        self.cp_group = None
        self.cp_size = None

        self.pos_embedder.disable_context_parallel()
        if self.extra_per_block_abs_pos_emb:
            self.extra_pos_embedder.disable_context_parallel()

        # Loop through the model to disable context parallel.
        for block in self.blocks.values():
            for layer in block.blocks:
                if layer.block_type in ["mlp", "ff"]:
                    continue
                elif layer.block_type in ["cross_attn", "ca"]:
                    continue
                else:
                    layer.block.attn.attn_op.cp_group = None
                    layer.block.attn.attn_op.cp_ranks = None

        log.debug("[CP] Disable context parallelism.")

    def build_patch_embed(self):
        (
            concat_padding_mask,
            in_channels,
            patch_spatial,
            patch_temporal,
            model_channels,
            is_diffusion_decoder,
            diffusion_decoder_token_condition_dim,
            diffusion_decoder_condition_on_sigma,
        ) = (
            self.concat_padding_mask,
            self.in_channels,
            self.patch_spatial,
            self.patch_temporal,
            self.model_channels,
            self.is_diffusion_decoder,
            self.diffusion_decoder_token_condition_dim,
            self.diffusion_decoder_condition_on_sigma,
        )
        in_channels = (
            in_channels + in_channels
            if (is_diffusion_decoder and not self.diffusion_decoder_condition_on_token)
            else in_channels
        )
        in_channels = in_channels + 1 if diffusion_decoder_condition_on_sigma else in_channels
        in_channels = (
            in_channels + self.diffusion_decoder_token_condition_dim
            if self.diffusion_decoder_condition_on_token
            else in_channels
        )
        in_channels = in_channels + 1 if concat_padding_mask else in_channels

        self.x_embedder = PatchEmbed(
            spatial_patch_size=patch_spatial,
            temporal_patch_size=patch_temporal,
            in_channels=in_channels,
            out_channels=model_channels,
            bias=False,
        )

        if self.diffusion_decoder_condition_on_token:
            self.token_embedder = nn.Embedding(
                self.diffusion_decoder_token_condition_voc_size, self.diffusion_decoder_token_condition_dim
            )

    def prepare_embedded_sequence(
        self,
        x_B_C_T_H_W: torch.Tensor,
        fps: Optional[torch.Tensor] = None,
        padding_mask: Optional[torch.Tensor] = None,
        latent_condition: Optional[torch.Tensor] = None,
        latent_condition_sigma: Optional[torch.Tensor] = None,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        """
        Prepares an embedded sequence tensor by applying positional embeddings and handling padding masks.

        Args:
            x_B_C_T_H_W (torch.Tensor): video
            fps (Optional[torch.Tensor]): Frames per second tensor to be used for positional embedding when required.
                                    If None, a default value (`self.base_fps`) will be used.
            padding_mask (Optional[torch.Tensor]): current it is not used

        Returns:
            Tuple[torch.Tensor, Optional[torch.Tensor]]:
                - A tensor of shape (B, T, H, W, D) with the embedded sequence.
                - An optional positional embedding tensor, returned only if the positional embedding class
                (`self.pos_emb_cls`) includes 'rope'. Otherwise, None.

        Notes:
            - If `self.concat_padding_mask` is True, a padding mask channel is concatenated to the input tensor.
            - The method of applying positional embeddings depends on the value of `self.pos_emb_cls`.
            - If 'rope' is in `self.pos_emb_cls` (case insensitive), the positional embeddings are generated using
                the `self.pos_embedder` with the shape [T, H, W].
            - If "fps_aware" is in `self.pos_emb_cls`, the positional embeddings are generated using the `self.pos_embedder`
                with the fps tensor.
            - Otherwise, the positional embeddings are generated without considering fps.
        """
        if self.diffusion_decoder_condition_on_token:
            latent_condition = self.token_embedder(latent_condition)
            B, _, T, H, W, _ = latent_condition.shape
            latent_condition = rearrange(latent_condition, "B 1 T H W D -> (B T) (1 D) H W")

            latent_condition = transforms.functional.resize(
                latent_condition, list(x_B_C_T_H_W.shape[-2:]), interpolation=transforms.InterpolationMode.BILINEAR
            )
            latent_condition = rearrange(latent_condition, "(B T) D H W -> B D T H W ", B=B, T=T)
        x_B_C_T_H_W = torch.cat([x_B_C_T_H_W, latent_condition], dim=1)
        if self.diffusion_decoder_condition_on_sigma:
            x_B_C_T_H_W = torch.cat([x_B_C_T_H_W, latent_condition_sigma], dim=1)
        if self.concat_padding_mask:
            padding_mask = transforms.functional.resize(
                padding_mask, list(x_B_C_T_H_W.shape[-2:]), interpolation=transforms.InterpolationMode.NEAREST
            )
            x_B_C_T_H_W = torch.cat(
                [x_B_C_T_H_W, padding_mask.unsqueeze(1).repeat(1, 1, x_B_C_T_H_W.shape[2], 1, 1)], dim=1
            )
        x_B_T_H_W_D = self.x_embedder(x_B_C_T_H_W)

        if self.extra_per_block_abs_pos_emb:
            extra_pos_emb = self.extra_pos_embedder(x_B_T_H_W_D, fps=fps)
        else:
            extra_pos_emb = None

        if "rope" in self.pos_emb_cls.lower():
            return x_B_T_H_W_D, self.pos_embedder(x_B_T_H_W_D, fps=fps), extra_pos_emb

        if "fps_aware" in self.pos_emb_cls:
            x_B_T_H_W_D = x_B_T_H_W_D + self.pos_embedder(x_B_T_H_W_D, fps=fps)  # [B, T, H, W, D]
        else:
            x_B_T_H_W_D = x_B_T_H_W_D + self.pos_embedder(x_B_T_H_W_D)  # [B, T, H, W, D]
        return x_B_T_H_W_D, None, extra_pos_emb