File size: 4,874 Bytes
b6af722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os

import imageio
import torch

from cosmos_predict1.autoregressive.inference.world_generation_pipeline import ARBaseGenerationPipeline
from cosmos_predict1.autoregressive.utils.inference import add_common_arguments, load_vision_input, validate_args
from cosmos_predict1.utils import log


def parse_args():
    parser = argparse.ArgumentParser(description="Video to world generation demo script")
    # Add common arguments
    add_common_arguments(parser)
    parser.add_argument(
        "--ar_model_dir",
        type=str,
        default="Cosmos-Predict1-4B",
    )
    parser.add_argument("--input_type", type=str, default="video", help="Type of input", choices=["image", "video"])
    args = parser.parse_args()
    return args


def main(args):
    """Run video-to-world generation demo.

    This function handles the main video-to-world generation pipeline, including:
    - Setting up the random seed for reproducibility
    - Initializing the generation pipeline with the provided configuration
    - Processing single or multiple images/videos from input
    - Generating videos from images/videos
    - Saving the generated videos to disk

    Args:
        cfg (argparse.Namespace): Configuration namespace containing:
            - Model configuration (checkpoint paths, model settings)
            - Generation parameters (temperature, top_p)
            - Input/output settings (images/videos, save paths)
            - Performance options (model offloading settings)

    The function will save:
        - Generated MP4 video files

    If guardrails block the generation, a critical log message is displayed
    and the function continues to the next prompt if available.
    """
    inference_type = "base"  # When the inference_type is "base", AR model does not take text as input, the world generation is purely based on the input video
    sampling_config = validate_args(args, inference_type)

    if args.num_gpus > 1:
        from megatron.core import parallel_state

        from cosmos_predict1.utils import distributed

        distributed.init()

    # Initialize base generation model pipeline
    pipeline = ARBaseGenerationPipeline(
        inference_type=inference_type,
        checkpoint_dir=args.checkpoint_dir,
        checkpoint_name=args.ar_model_dir,
        disable_diffusion_decoder=args.disable_diffusion_decoder,
        offload_guardrail_models=args.offload_guardrail_models,
        offload_diffusion_decoder=args.offload_diffusion_decoder,
        offload_network=args.offload_ar_model,
        offload_tokenizer=args.offload_tokenizer,
        disable_guardrail=args.disable_guardrail,
        parallel_size=args.num_gpus,
    )

    # Load input image(s) or video(s)
    input_videos = load_vision_input(
        input_type=args.input_type,
        batch_input_path=args.batch_input_path,
        input_image_or_video_path=args.input_image_or_video_path,
        data_resolution=args.data_resolution,
        num_input_frames=args.num_input_frames,
    )

    for idx, input_filename in enumerate(input_videos):
        inp_vid = input_videos[input_filename]
        # Generate video
        log.info(f"Run with image or video path: {input_filename}")
        out_vid = pipeline.generate(
            inp_vid=inp_vid,
            num_input_frames=args.num_input_frames,
            seed=args.seed,
            sampling_config=sampling_config,
        )
        if out_vid is None:
            log.critical("Guardrail blocked base generation.")
            continue

        # Save video
        if args.input_image_or_video_path:
            out_vid_path = os.path.join(args.video_save_folder, f"{args.video_save_name}.mp4")
        else:
            out_vid_path = os.path.join(args.video_save_folder, f"{idx}.mp4")

        imageio.mimsave(out_vid_path, out_vid, fps=25)
        log.info(f"Saved video to {out_vid_path}")

    # clean up properly
    if args.num_gpus > 1:
        parallel_state.destroy_model_parallel()
        import torch.distributed as dist

        dist.destroy_process_group()


if __name__ == "__main__":
    torch._C._jit_set_texpr_fuser_enabled(False)
    args = parse_args()
    main(args)