Spaces:
Build error
Build error
File size: 4,874 Bytes
b6af722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import imageio
import torch
from cosmos_predict1.autoregressive.inference.world_generation_pipeline import ARBaseGenerationPipeline
from cosmos_predict1.autoregressive.utils.inference import add_common_arguments, load_vision_input, validate_args
from cosmos_predict1.utils import log
def parse_args():
parser = argparse.ArgumentParser(description="Video to world generation demo script")
# Add common arguments
add_common_arguments(parser)
parser.add_argument(
"--ar_model_dir",
type=str,
default="Cosmos-Predict1-4B",
)
parser.add_argument("--input_type", type=str, default="video", help="Type of input", choices=["image", "video"])
args = parser.parse_args()
return args
def main(args):
"""Run video-to-world generation demo.
This function handles the main video-to-world generation pipeline, including:
- Setting up the random seed for reproducibility
- Initializing the generation pipeline with the provided configuration
- Processing single or multiple images/videos from input
- Generating videos from images/videos
- Saving the generated videos to disk
Args:
cfg (argparse.Namespace): Configuration namespace containing:
- Model configuration (checkpoint paths, model settings)
- Generation parameters (temperature, top_p)
- Input/output settings (images/videos, save paths)
- Performance options (model offloading settings)
The function will save:
- Generated MP4 video files
If guardrails block the generation, a critical log message is displayed
and the function continues to the next prompt if available.
"""
inference_type = "base" # When the inference_type is "base", AR model does not take text as input, the world generation is purely based on the input video
sampling_config = validate_args(args, inference_type)
if args.num_gpus > 1:
from megatron.core import parallel_state
from cosmos_predict1.utils import distributed
distributed.init()
# Initialize base generation model pipeline
pipeline = ARBaseGenerationPipeline(
inference_type=inference_type,
checkpoint_dir=args.checkpoint_dir,
checkpoint_name=args.ar_model_dir,
disable_diffusion_decoder=args.disable_diffusion_decoder,
offload_guardrail_models=args.offload_guardrail_models,
offload_diffusion_decoder=args.offload_diffusion_decoder,
offload_network=args.offload_ar_model,
offload_tokenizer=args.offload_tokenizer,
disable_guardrail=args.disable_guardrail,
parallel_size=args.num_gpus,
)
# Load input image(s) or video(s)
input_videos = load_vision_input(
input_type=args.input_type,
batch_input_path=args.batch_input_path,
input_image_or_video_path=args.input_image_or_video_path,
data_resolution=args.data_resolution,
num_input_frames=args.num_input_frames,
)
for idx, input_filename in enumerate(input_videos):
inp_vid = input_videos[input_filename]
# Generate video
log.info(f"Run with image or video path: {input_filename}")
out_vid = pipeline.generate(
inp_vid=inp_vid,
num_input_frames=args.num_input_frames,
seed=args.seed,
sampling_config=sampling_config,
)
if out_vid is None:
log.critical("Guardrail blocked base generation.")
continue
# Save video
if args.input_image_or_video_path:
out_vid_path = os.path.join(args.video_save_folder, f"{args.video_save_name}.mp4")
else:
out_vid_path = os.path.join(args.video_save_folder, f"{idx}.mp4")
imageio.mimsave(out_vid_path, out_vid, fps=25)
log.info(f"Saved video to {out_vid_path}")
# clean up properly
if args.num_gpus > 1:
parallel_state.destroy_model_parallel()
import torch.distributed as dist
dist.destroy_process_group()
if __name__ == "__main__":
torch._C._jit_set_texpr_fuser_enabled(False)
args = parse_args()
main(args)
|