File size: 8,381 Bytes
b6af722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Callable

import torch
from megatron.core import ModelParallelConfig, parallel_state
from megatron.core.tensor_parallel import ColumnParallelLinear as McoreColumnParallelLinear
from megatron.core.tensor_parallel import RowParallelLinear as McoreRowParallelLinear
from megatron.core.tensor_parallel import VocabParallelEmbedding as McoreVocabParallelEmbedding
from megatron.core.tensor_parallel.mappings import (
    reduce_from_tensor_model_parallel_region,
    reduce_scatter_to_sequence_parallel_region,
)
from megatron.core.tensor_parallel.utils import VocabUtility
from torch.distributed import _functional_collectives as funcol
from torch.distributed._functional_collectives import all_reduce


class VocabParallelEmbedding(torch.nn.Module):
    """
    Embedding parallelized in the vocabulary dimension.

    This is mainly adapted from torch.nn.Embedding and all the default
    values are kept.

    Args:
        num_embeddings (int): vocabulary size.
        embedding_dim (int): size of hidden state.
        precision (str): precision of the embedding.
    """

    def __init__(
        self,
        num_embeddings: int,
        embedding_dim: int,
        precision: str = "bfloat16",
    ):
        super().__init__()
        self.num_embeddings = num_embeddings
        self.embedding_dim = embedding_dim
        self.tensor_model_parallel_size = parallel_state.get_tensor_model_parallel_world_size()
        # Divide the weight matrix along the vocaburaly dimension.
        (self.vocab_start_index, self.vocab_end_index) = VocabUtility.vocab_range_from_global_vocab_size(
            self.num_embeddings,
            parallel_state.get_tensor_model_parallel_rank(),
            self.tensor_model_parallel_size,
        )
        self.num_embeddings_per_partition = self.vocab_end_index - self.vocab_start_index

        self.weight = torch.nn.Parameter(
            torch.empty(
                self.num_embeddings_per_partition,
                self.embedding_dim,
                device=torch.cuda.current_device(),
                dtype=getattr(torch, precision),
            )
        )

    def forward(self, input_):
        """Forward.

        Args:
            input_ (torch.Tensor): Input tensor.
        """
        if self.tensor_model_parallel_size > 1:
            # Build the mask.
            input_mask = (input_ < self.vocab_start_index) | (input_ >= self.vocab_end_index)
            # Mask the input.
            masked_input = input_.clone() - self.vocab_start_index
            masked_input[input_mask] = 0
        else:
            masked_input = input_
        # Get the embeddings.
        output = self.weight[masked_input]
        # Mask the output embedding.
        if self.tensor_model_parallel_size > 1:
            output[input_mask, :] = 0.0

        output = all_reduce(output, "sum", group=parallel_state.get_tensor_model_parallel_group())
        return output


class ColumnParallelLinear(McoreColumnParallelLinear):
    """
    A modified version of Mcore's ColumnParallelLinear that only returns the output tensor.

    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    def forward(self, input_: torch.Tensor):
        """
        Performs the forward pass of the column parallel linear layer.

        Args:
            input_ (torch.Tensor): The input tensor.
            weight (Optional[torch.Tensor], optional): The weight tensor. If None, uses the layer's own weight.

        Returns:
            torch.Tensor: The output tensor after the linear transformation.
        """
        output, _ = super().forward(input_)
        return output


class RowParallelLinear(McoreRowParallelLinear):
    """
    A modified version of Mcore's RowParallelLinear that only returns the output tensor.

    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    def forward(self, input_: torch.Tensor):
        """
        Performs the forward pass of the Row Parallel linear layer.

        Args:
            input_ (torch.Tensor): The input tensor.
            weight (Optional[torch.Tensor], optional): The weight tensor. If None, uses the layer's own weight.

        Returns:
            torch.Tensor: The output tensor after the linear transformation.
        """
        output, _ = super().forward(input_)
        return output


class TrainingVocabParallelEmbedding(McoreVocabParallelEmbedding):
    """
    Embedding parallelized in the vocabulary dimension.

    This is mainly adapted from torch.nn.Embedding and all the default
    values are kept.

    Args:
        num_embeddings (int): vocabulary size.
        embedding_dim (int): size of hidden state.

    Keyword Args:
        sequence_parallel (bool): Decides whether to perform ReduceScatter after embedding lookup
        batch_first (bool): If True, then output tensor shape is [batch, seq, feature]. If False, then shape becomes
            [seq, batch, feature]. Note: We assume the input tensor is always in the shape of [seq, batch].
        config: A megatron.core.ModelParallelConfig object
        use_inference_allreduce (bool): If True, then Megatron's allreduce in the forward pass is disabled, and the pytorch's
            allreduce is used instead (inference mode only).
    """

    def __init__(
        self,
        num_embeddings: int,
        embedding_dim: int,
        *,
        init_method: Callable,
        sequence_parallel: bool = False,
        batch_first: bool = False,
        config: ModelParallelConfig,
        use_inference_allreduce: bool = False,
    ):
        super(TrainingVocabParallelEmbedding, self).__init__(
            num_embeddings=num_embeddings,
            embedding_dim=embedding_dim,
            init_method=init_method,
            config=config,
        )
        self.sequence_parallel = sequence_parallel
        if sequence_parallel:
            # If sequence parallel, then the output tensor should be in the shape of [seq, batch, feature]
            batch_first = False
        self.batch_first = batch_first
        self.use_inference_allreduce = use_inference_allreduce

    def forward(self, input_):
        """Forward.

        Args:
            input_ (torch.Tensor): Input tensor.
        """
        if self.tensor_model_parallel_size > 1:
            # Build the mask.
            input_mask = (input_ < self.vocab_start_index) | (input_ >= self.vocab_end_index)
            # Mask the input.
            masked_input = input_.clone() - self.vocab_start_index
            masked_input[input_mask] = 0
        else:
            masked_input = input_
        # Get the embeddings.
        output = self.weight[masked_input]
        # Mask the output embedding.
        if self.tensor_model_parallel_size > 1:
            output[input_mask, :] = 0.0

        if self.sequence_parallel:
            assert not self.batch_first
            # Data format change to avoid explicit tranposes : [b s h] --> [s b h].
            output = output.transpose(0, 1).contiguous()
            if not self.use_inference_allreduce:
                output = reduce_scatter_to_sequence_parallel_region(output)
        else:
            # Reduce across all the model parallel GPUs.
            if not self.use_inference_allreduce:
                output = reduce_from_tensor_model_parallel_region(output)
            if not self.batch_first:
                # Shape: [b, s, h] --> [s, b, h]
                output = output.transpose(0, 1).contiguous()

        if self.use_inference_allreduce:
            output = funcol.all_reduce(output, "sum", group=parallel_state.get_tensor_model_parallel_group())
        return output