File size: 5,842 Bytes
b6af722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional

import torch
import torch.nn as nn
import torch.nn.functional as F
from megatron.core import ModelParallelConfig, parallel_state
from torch.distributed import _functional_collectives as funcol
from torch.distributed._functional_collectives import all_reduce

from cosmos_predict1.autoregressive.modules.linear import ColumnParallelLinear, RowParallelLinear


def compute_llama3_ffn_hidden_dim(dim: int, multiple_of: int, ffn_dim_multiplier: float) -> int:
    """
    Computes the feedforward network dimensionality.

    Args:
        dim (int): The embedding dimensionality.
        multiple_of (int): The multiple to round up the hidden dimensionality.
        ffn_dim_multiplier (float): The multiplier for the hidden dimensionality.

    Returns:
        The feedforward network dimensionality.
    """
    hidden_dim = 4 * dim
    hidden_dim = int(2 * hidden_dim / 3)  # custom dim factor
    hidden_dim = int(ffn_dim_multiplier * hidden_dim)
    # Round up hidden dimensionality to the nearest multiple
    return multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)


class MLP(nn.Module):
    def __init__(
        self,
        dim: int,
        hidden_dim: int,
        tensor_parallel_size: int = 1,
    ):
        """
        Initializes the multilayer perceptron (MLP) module.

        Args:
            dim: The input and output dimensionality.
            hidden_dim: The dimensionality of the hidden layer.
        """
        super().__init__()
        self.tp_size = tensor_parallel_size
        self.w1 = nn.Linear(dim, hidden_dim // self.tp_size, bias=False)
        self.w2 = nn.Linear(hidden_dim // self.tp_size, dim, bias=False)
        self.w3 = nn.Linear(dim, hidden_dim // self.tp_size, bias=False)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Performs the forward pass of the MLP module.

        Args:
            x: The input tensor of shape (batch_size, dim).

        Returns:
            The output tensor of shape (batch_size, dim).
        """
        output = self.w2(F.silu(self.w1(x)) * self.w3(x))
        if self.tp_size > 1:
            output = all_reduce(output, "sum", group=parallel_state.get_tensor_model_parallel_group())
        return output


class TrainingMLP(nn.Module):
    def __init__(
        self,
        dim: int,
        hidden_dim: int,
        hidden_dropout: float = 0.0,
        set_parallel_mode: bool = False,
        model_parallel: Optional[ModelParallelConfig] = None,
        inference: bool = False,
    ):
        """
        Initializes the multilayer perceptron (MLP) module.

        Args:
            dim: The input and output dimensionality.
            hidden_dim: The dimensionality of the hidden layer.
            hidden_dropout: Dropout after the attention and feed-forward layers (following TransformerEngine's
                implementation in its TransformerLayer class).
            set_parallel_mode: Whether to use column and row parallel linear layers.
            model_parallel: The model parallel configuration.
            inference: Whether the model is used for inference.
        """
        super().__init__()
        self.hidden_dropout = hidden_dropout
        if model_parallel and model_parallel.tensor_model_parallel_size > 1:
            self.tp_size = model_parallel.tensor_model_parallel_size
        else:
            self.tp_size = 1
        if set_parallel_mode and not inference:
            kwargs = {"bias": False, "init_method": lambda x: x, "config": model_parallel}
            # Using column and row parallel linear layers
            self.w1 = ColumnParallelLinear(dim, hidden_dim, gather_output=False, **kwargs)
            self.w2 = RowParallelLinear(hidden_dim, dim, input_is_parallel=True, skip_bias_add=True, **kwargs)
            self.w3 = ColumnParallelLinear(dim, hidden_dim, gather_output=False, **kwargs)
        else:
            self.w1 = nn.Linear(dim, hidden_dim // self.tp_size, bias=False)
            self.w2 = nn.Linear(hidden_dim // self.tp_size, dim, bias=False)
            self.w3 = nn.Linear(dim, hidden_dim // self.tp_size, bias=False)

        self.inference = inference

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Performs the forward pass of the MLP module.

        Args:
            x: The input tensor of shape (batch_size, dim).

        Returns:
            The output tensor of shape (batch_size, dim).
        """
        x = F.dropout(x, p=self.hidden_dropout, training=self.training)
        output = self.w2(F.silu(self.w1(x)) * self.w3(x))
        output = F.dropout(output, p=self.hidden_dropout, training=self.training)

        if self.inference and self.tp_size > 1:
            output = funcol.all_reduce(output, "sum", group=parallel_state.get_tensor_model_parallel_group())
        return output

    def init_weights(self, init_std: float):
        """
        Initializes the weights of the MLP module.
        """
        nn.init.trunc_normal_(self.w1.weight, mean=0.0, std=0.02)
        for linear in (self.w2, self.w3):
            nn.init.trunc_normal_(linear.weight, mean=0.0, std=init_std)