Spaces:
Build error
Build error
File size: 15,018 Bytes
b6af722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module implements a Vision Transformer (ViT) with 2D Rotary Position Embeddings,
designed for processing image inputs in vision-language models.
This module follows Mistral's vision encoder implementation (for their Pistral-12B VLM):
https://github.com/mistralai/mistral-inference/blob/main/src/mistral_inference/vision_encoder.py
"""
from functools import partial
from typing import Any, Callable, Mapping, Optional, Tuple
import torch
import torch.nn as nn
from cosmos_predict1.autoregressive.modules.normalization import create_norm
from cosmos_predict1.autoregressive.networks.transformer import TransformerBlock
from cosmos_predict1.utils import log
def get_vit_config(model_name: str) -> Mapping[str, Any]:
"""
Get the ViT configuration for a given model name.
"""
if model_name == "pixtral-12b-vit":
# The 400M ViT of Pixtral 12B VLM
return dict(
dim=1024,
num_channels=3,
image_size=1024,
patch_size=16,
rope_theta=10000,
ffn_hidden_size=4096,
n_layers=24,
n_heads=16,
n_kv_heads=16,
norm_type="rmsnorm",
norm_eps=1e-5,
image_token_id=10,
)
else:
raise ValueError(f"Unknown model name: {model_name}")
def precompute_freqs_cis_2d(
dim: int,
height: int,
width: int,
theta: float,
) -> torch.Tensor:
"""
Precompute 2D complex tensor for rotary position embedding.
This function generates a 2D complex tensor used for rotary position embeddings,
which helps the model understand spatial relationships in the input image.
Args:
dim (int): Dimension of the model (typically the hidden size divided by number of heads).
height (int): Height of the image in patches.
width (int): Width of the image in patches.
theta (float): Base value for the angle calculation, controls the frequency range.
Returns:
torch.Tensor: 2D complex tensor of shape (height, width, dim // 2).
"""
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2).float() / dim))
h = torch.arange(height, device=freqs.device)
w = torch.arange(width, device=freqs.device)
freqs_h = torch.outer(h, freqs[::2]).float()
freqs_w = torch.outer(w, freqs[1::2]).float()
freqs_2d = torch.cat(
[
freqs_h[:, None, :].repeat(1, width, 1),
freqs_w[None, :, :].repeat(height, 1, 1),
],
dim=-1,
)
return torch.polar(torch.ones_like(freqs_2d), freqs_2d)
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
"""
Reshape frequency tensor for broadcasting with input tensor.
This function ensures that the frequency tensor can be properly broadcast
with the input tensor during the rotary embedding process.
Args:
freqs_cis (torch.Tensor): Frequency tensor from precompute_freqs_cis_2d.
x (torch.Tensor): Input tensor to be embedded.
Returns:
torch.Tensor: Reshaped frequency tensor ready for broadcasting.
"""
ndim = x.ndim
assert 0 <= 1 < ndim, f"ndim is {ndim} but index is {1}"
assert freqs_cis.shape == (
x.shape[1],
x.shape[-1],
), f"freqs_cis shape is {freqs_cis.shape} but x shape is {x.shape}"
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return freqs_cis.view(*shape)
def apply_rotary_emb(
xq: torch.Tensor,
xk: torch.Tensor,
*args,
freqs_cis: torch.Tensor,
**kwargs,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Apply rotary positional embeddings to input tensors.
This function applies the rotary positional embeddings to the query and key tensors,
which helps the model understand spatial relationships in the input.
Args:
xq (torch.Tensor): Query tensor.
xk (torch.Tensor): Key tensor.
freqs_cis (torch.Tensor): Precomputed frequencies from precompute_freqs_cis_2d.
*args: Variable length argument list (unused).
**kwargs: Arbitrary keyword arguments (unused).
Returns:
Tuple[torch.Tensor, torch.Tensor]: Rotated query and key tensors.
"""
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)
class VisionTransformer(nn.Module):
"""
Vision Transformer model for image processing.
This class implements a Vision Transformer that processes images using a patch-based approach
and applies transformer layers with rotary position embeddings.
Args:
dim (int): Dimension of the model (hidden size).
num_channels (int): Number of input image channels (e.g., 3 for RGB).
patch_size (int): Size of each image patch (e.g., 16x16 pixels).
n_layers (int): Number of transformer layers.
n_heads (int): Number of attention heads.
ffn_hidden_size (int): Hidden size of the feed-forward network in transformer blocks.
norm_type (str): Type of normalization to use (e.g., "rmsnorm").
norm_eps (float): Epsilon value for normalization layers.
image_size (int): Size of the input image (assumed square).
rope_theta (float): Base value for rotary position embedding calculation.
attention_dropout (float): Dropout rate for attention layers.
hidden_dropout (float): Dropout rate for hidden layers.
image_token_id (int): Token ID for the image token (if present).
"""
def __init__(
self,
dim: int = 1024,
num_channels: int = 3,
patch_size: int = 16,
n_layers: int = 24,
n_heads: int = 16,
n_kv_heads: int = None,
ffn_hidden_size: int = 4096,
norm_type: str = "rmsnorm",
norm_eps: float = 1e-5,
image_size: int = 1024,
rope_theta: float = 1000000.0,
image_token_id: int = None,
tensor_model_parallel_size: int = 1,
):
super().__init__()
self.patch_conv = nn.Conv2d(
in_channels=num_channels,
out_channels=dim,
kernel_size=patch_size,
stride=patch_size,
bias=False,
)
self.ln_pre = create_norm(norm_type=norm_type, dim=dim, eps=norm_eps)
if n_kv_heads is None:
n_kv_heads = n_heads
layer_args = dict(
n_layers=n_layers,
n_heads=n_heads,
n_kv_heads=n_kv_heads,
dim=dim,
use_qk_normalization=False,
max_seq_len=None,
max_batch_size=None,
ffn_hidden_size=ffn_hidden_size,
norm_type=norm_type,
norm_eps=norm_eps,
causal_mask=False, # Full attention in ViT
head_dim=None,
insert_cross_attn=False,
tensor_model_parallel_size=tensor_model_parallel_size,
attn_type="full",
)
self.transformer = VisionTransformerBlocks(n_layers=n_layers, args=layer_args)
head_dim = dim // n_heads
assert head_dim % 2 == 0, "ROPE requires even head_dim"
self.dim = dim
self.n_heads = n_heads
self.max_patches_per_side = image_size // patch_size
self.image_size = image_size
self.patch_size = patch_size
self.rope_theta = rope_theta
self._freqs_cis: Optional[torch.Tensor] = None
self.image_token_id = image_token_id
num_params = self.get_num_params()
log.debug(f"Number of model parameters: {round(num_params / 1e6, 3)}M")
@classmethod
def build(
cls,
config: Mapping[str, Any],
) -> "VisionTransformer":
"""
Create a Vision Transformer from a configuration dictionary.
This class method creates a Vision Transformer from a configuration dictionary,
which is typically loaded from a JSON file or other configuration source.
Args:
config (Mapping[str, Any]): Configuration dictionary for the Vision Transformer.
Returns:
VisionTransformer: Vision Transformer model instance.
"""
necessary_keys = ["dim", "num_channels", "patch_size", "n_layers", "n_heads", "ffn_hidden_size", "rope_theta"]
missing_keys = [k for k in necessary_keys if k not in config]
assert len(missing_keys) == 0, f"Missing keys in config: {missing_keys}"
return cls(
**config,
)
def expand_in_channels(self, new_in_channels: int):
"""
Expand the input channels of the patch convolution layer.
This is useful when the input is non-standard, e.g. a 4-channel image with the last channel as the alpha channel.
Note that you should only call this method after the weight is loaded.
"""
assert (
new_in_channels > self.patch_conv.in_channels
), "Cannot expand the input channels of the patch convolution layer to be less than the original number of channels."
log.debug(
f"Vision encoder in_channels is {self.patch_conv.in_channels}. But you have specified to be {new_in_channels}. We will change it to {new_in_channels} channels with {new_in_channels - self.patch_conv.in_channels} channels of 0s."
)
new_conv = nn.Conv2d(
in_channels=new_in_channels,
out_channels=self.patch_conv.out_channels,
kernel_size=self.patch_conv.kernel_size,
stride=self.patch_conv.stride,
bias=False,
)
new_conv.weight.data[:, : self.patch_conv.in_channels].copy_(self.patch_conv.weight.data)
new_conv.weight.data[
:, self.patch_conv.in_channels :
].zero_() # zeroize, such that initially it has no effect to output
self.patch_conv = new_conv
@property
def device(self) -> torch.device:
"""Get the device of the model."""
return next(self.parameters()).device
@property
def freqs_cis(self) -> torch.Tensor:
"""
Get or compute the frequency tensor for rotary position embedding.
This property lazily initializes and caches the frequency tensor used for
rotary position embeddings, ensuring it's on the correct device.
Returns:
torch.Tensor: The frequency tensor for rotary position embeddings.
"""
if self._freqs_cis is None:
self._freqs_cis = precompute_freqs_cis_2d(
dim=self.dim // self.n_heads,
height=self.max_patches_per_side,
width=self.max_patches_per_side,
theta=self.rope_theta,
)
if self._freqs_cis.device != self.device:
self._freqs_cis = self._freqs_cis.to(device=self.device)
return self._freqs_cis
def forward(
self,
x: torch.Tensor,
) -> torch.Tensor:
"""
Forward pass of the Vision Transformer.
This method processes the input image through the Vision Transformer,
including patch embedding, position embedding, and transformer layers.
Args:
x (torch.Tensor): Input tensor of shape (B, C, H, W), where B is batch size,
C is number of channels, and H, W are height and width.
Returns:
torch.Tensor: Output features of shape (B, N, D), where N is the number of patches
and D is the embedding dimension.
"""
patch_embeds = self.patch_conv(x) # (B, D, Hp, Wp)
_, _, Hp, Wp = patch_embeds.shape # Patch embeds dim
patch_embeds = patch_embeds.flatten(2) # (B, D, Hp*Wp)
patch_embeds = patch_embeds.transpose(1, 2) # (B, Hp*Wp, D)
patch_embeds = self.ln_pre(patch_embeds) # (B, Hp*Wp, D)
positions = torch.stack(
torch.meshgrid(
torch.arange(Hp),
torch.arange(Wp),
indexing="ij",
),
dim=-1,
).reshape(-1, 2)
freqs_cis = self.freqs_cis[positions[:, 0], positions[:, 1]]
rope = partial(apply_rotary_emb, freqs_cis=freqs_cis)
out = self.transformer(patch_embeds, rope=rope)
return out
def get_num_params(
self,
) -> int:
"""
Return the number of parameters in the model.
"""
n_params = sum(p.numel() for p in self.parameters())
return n_params
class VisionTransformerBlocks(nn.Module):
"""
Vision Transformer Blocks.
This class implements a stack of Transformer blocks used in the Vision Transformer.
Args:
n_layers (int): Number of transformer layers.
args (Mapping[str, Any]): Arguments for each transformer block, including dimensions,
"""
def __init__(
self,
n_layers: int,
args: Mapping[str, Any],
):
super().__init__()
self.layers = torch.nn.ModuleList()
for layer_id in range(n_layers):
self.layers.append(
TransformerBlock(
layer_id=layer_id,
args=args,
)
)
def forward(
self,
x: torch.Tensor,
rope: Callable,
) -> torch.Tensor:
"""
Forward pass through the Vision Transformer Blocks.
This method applies a series of Transformer blocks to the input tensor,
using the provided rotary position embedding function.
Args:
x (torch.Tensor): Input tensor of shape (B, N, D), where B is batch size,
N is the number of patches, and D is the embedding dimension.
rope (Callable): Rotary position embedding function to be applied in each layer.
Returns:
torch.Tensor: Output tensor after passing through all transformer layers,
with the same shape as the input.
"""
for layer in self.layers:
x = layer(x, input_pos=None, mask=None, rope=rope)
return x
|