Spaces:
Build error
Build error
File size: 59,676 Bytes
b6af722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Optional
import torch
import torch.nn as nn
import transformer_engine as te
from megatron.core import InferenceParams, ModelParallelConfig, parallel_state
from megatron.core.tensor_parallel import gather_from_tensor_model_parallel_region
from torch.distributed import ProcessGroup
from torch.distributed import _functional_collectives as funcol
from torch.distributed import broadcast, get_process_group_ranks
from torch.nn.modules.module import _IncompatibleKeys
from transformer_engine.pytorch.module.linear import Linear as LinearTE
from transformer_engine.pytorch.module.rmsnorm import RMSNorm as RMSNormTE
from cosmos_predict1.utils import log
_ACTION_DIM = 8
from cosmos_predict1.autoregressive.modules.embedding import (
RotaryPositionEmbeddingPytorch,
RotaryPositionEmbeddingPytorchV2,
RotaryPositionEmbeddingTE,
SinCosPosEmbAxisTE,
get_pos_emb_on_this_cp_rank,
get_pos_emb_on_this_sptp_rank,
)
from cosmos_predict1.autoregressive.modules.linear import ColumnParallelLinear, TrainingVocabParallelEmbedding
from cosmos_predict1.autoregressive.modules.mlp import TrainingMLP, compute_llama3_ffn_hidden_dim
from cosmos_predict1.autoregressive.modules.normalization import create_norm
from cosmos_predict1.autoregressive.training.modules.attention import (
GQA,
create_group_causal_attn_mask,
enable_different_context_dim_in_te_ca,
enable_qk_normalization_in_te_mha,
)
from cosmos_predict1.autoregressive.utils.checkpoint import process_state_dict, substrings_to_ignore
from cosmos_predict1.autoregressive.utils.misc import maybe_convert_to_namespace
from cosmos_predict1.autoregressive.utils.parallel import (
AllReduceBWDRMSNormTE,
allreduce_layernorm_grads,
sync_1d_parameters,
)
_MLP_HIDDEN_DIM_DIVISOR = (
4 # hidden dim of the action embedding layer is action_embedding_dim // _MLP_HIDDEN_DIM_DIVISOR
)
_T5_NUM_TOKENS = 512
class TransformerBlock(nn.Module):
"""
A single transformer block consisting of an attention layer and a feed-forward layer.
"""
def __init__(self, layer_id: int, model_parallel: Optional[ModelParallelConfig] = None, args=None):
"""
Initializes the TransformerBlock module.
Args:
layer_id: The ID of the transformer block.
args: The model arguments containing hyperparameters.
"""
super().__init__()
args = maybe_convert_to_namespace(args)
attention_args = {
"n_heads": args["n_heads"],
"n_kv_heads": args["n_kv_heads"],
"dim": args["dim"],
"context_dim": None,
"max_batch_size": args["max_batch_size"],
"max_seq_len": args["max_seq_len"],
"inference": args["inference"],
"flash_attn": args["flash_attn"],
"use_qk_normalization": args["use_qk_normalization"],
"attention_dropout": getattr(args, "attention_dropout", 0.0),
"set_parallel_mode": args["set_parallel_mode"],
"model_parallel": model_parallel,
"attention_tp": args["attention_tp"],
"causal_mask": args["causal_mask"],
"head_dim": args["head_dim"],
"fuse_qkv": getattr(args, "fuse_qkv", False),
"precision": getattr(args, "precision", "bfloat16"),
"attention_type": getattr(args, "attention_type", "self"),
}
self.attention = GQA(**attention_args)
self.has_cross_attention = False
self.cross_attention, self.cross_attention_norm = None, None
if args["insert_cross_attn"] and layer_id % args["insert_cross_attn_every_k_layers"] == 0:
self.has_cross_attention = True
cross_attention_args = attention_args.copy()
cross_attention_args.update(
{"context_dim": args["context_dim"], "fuse_qkv": False, "attention_type": "cross"}
)
self.cross_attention = GQA(**cross_attention_args)
self.cross_attention_norm = create_norm(args["norm_type"], dim=args["dim"], eps=args["norm_eps"])
self.feed_forward = TrainingMLP(
dim=args["dim"],
hidden_dim=(
compute_llama3_ffn_hidden_dim(
dim=args["dim"], multiple_of=args["multiple_of"], ffn_dim_multiplier=args["ffn_dim_multiplier"]
)
if args["ffn_hidden_size"] is None
else args["ffn_hidden_size"]
),
hidden_dropout=getattr(args, "hidden_dropout", 0.0),
set_parallel_mode=args["set_parallel_mode"],
model_parallel=model_parallel,
inference=args["inference"],
)
self.layer_id = layer_id
self.num_layers = args["n_layers"]
self.attention_norm = create_norm(args["norm_type"], dim=args["dim"], eps=args["norm_eps"])
self.ffn_norm = create_norm(args["norm_type"], dim=args["dim"], eps=args["norm_eps"])
# If `True`, then each transformer block init uses its layer ID, and if `False`, each uses the
# total number of transformer blocks. Default is `True` (following the TorchTitan implementation of Llama3).
if getattr(args, "depth_init", True):
self.weight_init_std = 0.02 / (2 * (self.layer_id + 1)) ** 0.5
else:
self.weight_init_std = 0.02 / (2 * self.num_layers) ** 0.5
def forward(
self,
x: torch.Tensor,
rope: RotaryPositionEmbeddingPytorch,
input_pos: Optional[torch.Tensor] = None,
mask: Optional[torch.Tensor] = None,
context: Optional[torch.Tensor] = None,
context_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Performs the forward pass of the TransformerBlock module.
Args:
x: The input tensor.
input_pos: The position of the current sequence. Used in inference (with KV cache) only.
freqs_cis: The precomputed frequency values for rotary position embeddings.
mask: The attention mask tensor.
context (Optional[torch.Tensor]): The context tensor added via cross-attn.
context_mask (Optional[torch.Tensor]): The context cross-attn mask tensor.
Returns:
The output tensor after applying the transformer block.
"""
# Apply attention and residual connection
h = x + self.attention(self.attention_norm(x), rope=rope, input_pos=input_pos, mask=mask)
# If insert cross-attention, apply CA and residual connection
if self.has_cross_attention:
h = h + self.cross_attention(
self.cross_attention_norm(h), rope=rope, input_pos=input_pos, mask=context_mask, context=context
)
# Apply feed-forward network and residual connection
out = h + self.feed_forward(self.ffn_norm(h))
return out
def init_weights(self):
"""
Initializes the weights of the transformer block.
"""
for norm in (self.attention_norm, self.ffn_norm):
norm.reset_parameters()
self.attention.init_weights(self.weight_init_std)
self.feed_forward.init_weights(self.weight_init_std)
if self.has_cross_attention:
self.cross_attention_norm.reset_parameters()
self.cross_attention.init_weights(self.weight_init_std)
# zero-init the final output layer of cross-attention
# nn.init.zeros_(self.cross_attention.wo.weight)
class TransformerBlockTE(te.pytorch.TransformerLayer):
"""
Wrapper class over TE's `TransformerLayer`.
Args:
layer_id (int): The ID of the transformer block.
args: The model arguments containing hyperparameters.
"""
def __init__(
self,
layer_id: int,
args,
tp_group: Optional[ProcessGroup] = None,
set_parallel_mode: bool = False,
attn_input_format: str = "bshd",
):
attention_args = {
"hidden_size": args["dim"],
"ffn_hidden_size": (
compute_llama3_ffn_hidden_dim(
dim=args["dim"], multiple_of=args["multiple_of"], ffn_dim_multiplier=args["ffn_dim_multiplier"]
)
if args["ffn_hidden_size"] is None
else args["ffn_hidden_size"]
),
"num_attention_heads": args["n_heads"],
"bias": False,
"layernorm_epsilon": args["norm_eps"],
"hidden_dropout": getattr(args, "hidden_dropout", 0.0),
"attention_dropout": getattr(args, "attention_dropout", 0.0),
"normalization": "RMSNorm",
"activation": "swiglu",
"attn_input_format": attn_input_format,
"num_gqa_groups": args["n_kv_heads"],
"fuse_wgrad_accumulation": False,
"fuse_qkv_params": False,
"tp_group": tp_group,
"sequence_parallel": args["sequence_parallel"],
"set_parallel_mode": set_parallel_mode,
"layer_number": layer_id + 1,
"self_attn_mask_type": "causal" if args["causal_mask"] else "no_mask",
"kv_channels": args["head_dim"], # If None, te.pytorch.TransformerLayer defaults it to dim // n_heads
"layer_type": "encoder",
}
self.has_cross_attention = False
if args["insert_cross_attn"] and layer_id % args["insert_cross_attn_every_k_layers"] == 0:
self.has_cross_attention = True
attention_args["layer_type"] = "decoder"
super().__init__(**attention_args)
if args["use_qk_normalization"]:
# Add QK normalization layers and replace the forward function of original Multi-Head Attention module with
# our custom one to add QK normalization operations.
enable_qk_normalization_in_te_mha(self.self_attention, norm_eps=args["norm_eps"], is_self_attn=True)
if self.has_cross_attention:
enable_qk_normalization_in_te_mha(self.inter_attention, norm_eps=args["norm_eps"], is_self_attn=False)
if self.has_cross_attention:
enable_different_context_dim_in_te_ca(
self.inter_attention, context_dim=args["context_dim"], args=attention_args
)
self.layer_id = layer_id
self.num_layers = args["n_layers"]
# If `True`, then each transformer block init uses its layer ID, and if `False`, each uses the
# total number of transformer blocks. Default is `True` (following the TorchTitan implementation of Llama3).
if getattr(args, "depth_init", True):
self.weight_init_std = 0.02 / (2 * (self.layer_id + 1)) ** 0.5
else:
self.weight_init_std = 0.02 / (2 * self.num_layers) ** 0.5
self.args = args
self.inference = args["inference"]
def set_inference_flag(self, flag: bool):
"""
Set the inference flag for the transformer layers.
"""
self.inference = flag
def forward(
self,
x: torch.Tensor,
rotary_pos_emb: torch.Tensor,
mask: Optional[torch.Tensor],
inference_params: Optional[InferenceParams] = None,
context: Optional[torch.Tensor] = None,
context_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Custom forward to make sure we only pass relevant arguments to the
forward pass of the `TransformerLayer`.
Args:
x (torch.Tensor): The input tensor.
mask (Optional[torch.Tensor]): The attention mask tensor.
inference_params (Optional[InferenceParams]): Inference parameters used for caching key-value pairs in the TE backend.
It is not applicable for the PyTorch backend and should be set to None in that case.
context (Optional[torch.Tensor]): The context tensor added via cross-attn.
context_mask (Optional[torch.Tensor]): The context cross-attn mask tensor.
Returns:
torch.Tensor: The output tensor after applying the transformer block
"""
inference_params = None if not self.inference else inference_params
output = super().forward(
x,
attention_mask=mask,
rotary_pos_emb=rotary_pos_emb.to(x.device),
inference_params=inference_params,
encoder_output=context,
enc_dec_attn_mask=context_mask,
)
return output
def init_weights(self):
"""
Initializes the weights of the transformer block.
"""
# Self Attention
attn_layer = self.self_attention.layernorm_qkv
for linear_weight in [attn_layer.query_weight, attn_layer.key_weight, attn_layer.value_weight]:
nn.init.trunc_normal_(linear_weight, mean=0.0, std=0.02)
nn.init.trunc_normal_(self.self_attention.proj.weight, mean=0.0, std=self.weight_init_std)
# Cross Attention
if self.has_cross_attention:
nn.init.trunc_normal_(self.inter_attention.layernorm_query.query_weight, mean=0.0, std=0.02)
nn.init.trunc_normal_(self.inter_attention.key_value.key_weight, mean=0.0, std=0.02)
nn.init.trunc_normal_(self.inter_attention.key_value.value_weight, mean=0.0, std=0.02)
# zero-init the final output layer of cross-attention
if self.args["zero_init_cross_attn_proj"]:
nn.init.zeros_(self.inter_attention.proj.weight)
else:
nn.init.trunc_normal_(self.inter_attention.proj.weight, mean=0.0, std=self.weight_init_std)
# RMS Normalization
for norm_weight in (self.layernorm_mlp.layer_norm_weight, self.self_attention.layernorm_qkv.layer_norm_weight):
torch.nn.init.ones_(norm_weight)
# In the case of QK Normalization, we also reset the parameters of the QK normalization layers.
if self.args["use_qk_normalization"]:
for norm_weight in [self.self_attention.q_norm.weight, self.self_attention.k_norm.weight]:
torch.nn.init.ones_(norm_weight)
# MLP
for linear_weight in (self.layernorm_mlp.fc1_weight, self.layernorm_mlp.fc2_weight):
nn.init.trunc_normal_(linear_weight, mean=0.0, std=self.weight_init_std)
# The fc1_weight is a fused weight of w1 and w2 in the MLP of the PyTorch backend, where w1 is initialized with
# a different std (0.02 by TorchTitan). So we re-initialize the w1 part of the fused weight below.
split_point = self.layernorm_mlp.fc1_weight.shape[0] // 2
nn.init.trunc_normal_(self.layernorm_mlp.fc1_weight[:split_point], mean=0.0, std=0.02)
class Transformer(nn.Module):
"""
The Transformer network consisting of transformer blocks.
"""
def __init__(self, params, model_parallel=None, tokenizer_config=None, init_weights: bool = True):
"""
Initializes the Transformer module.
Args:
params: The model parameters containing hyperparameters.
model_parallel: The model parallel configuration.
tokenizer_config: The model tokenizer configuration.
init_weights (bool): Whether to initialize the weights of the transformer following
TorchTitan's Llama3 initialization scheme.
"""
super().__init__()
# Check if self.params is an OmegaConf DictConfig instance
self.params = maybe_convert_to_namespace(params)
self.vocab_size = params["vocab_size"]
self.n_layers = params["n_layers"]
self.precision = getattr(torch, params["precision"])
self.inference = params["inference"]
self.backend = params["backend"]
self.tokenizer_config = tokenizer_config
self.model_parallel = model_parallel
self.num_video_frames = params["num_video_frames"]
self.token_emb_dropout = nn.Dropout(getattr(params, "embedding_dropout", 0.0))
tp_group = self._get_tp_group()
# Sequence parallelism requires the first dimension to be the sequence dimension. When sequence parallelism
# is enabled, we transpose the first two dimensions of the input tensor, and specify the format as "sbhd",
# (sequence, batch, head, dim). Otherwise, the input format is "bshd" (batch, sequence, head, dim).
self.attn_input_format = "bshd" if not params["sequence_parallel"] else "sbhd"
# Token embeddings
self.tok_embeddings = self._create_token_embeddings(self.model_parallel)
self.rope_config = self._create_rope_config()
if self.backend == "pytorch":
self._initialize_pytorch_backend(model_parallel)
elif self.backend == "transformer_engine":
self._initialize_transformer_engine_backend(tp_group)
else:
raise ValueError(f"Unknown backend: {self.backend}")
self.output = self._create_output_projection(model_parallel)
# Action conditioning
self.use_action_condition = getattr(params, "use_action_condition", False)
if self.use_action_condition:
self.action_dim = getattr(
params, "action_dim", _ACTION_DIM
) # e.g., [Δx, Δy, Δz, rx, ry, rz, gripper_open, zero_pad]
self.action_embedding_dim = self.params["action_embedding_dim"] # 1024
self.action_embedding_mode = getattr(params, "action_embedding_mode", "mlp") # Default to mlp mode
self.group_causal_mask_mode = getattr(
params, "group_causal_mask_mode", None
) # Default to None, 'causal' or 'group_diagonal'
self.action_embedding_layers = self._create_action_projection()
if params["sequence_parallel"]:
if model_parallel is None:
setattr(params, "sequence_parallel", False)
log.critical("model_parallel is None. Disabling sequence parallelism.")
self.sequence_parallel_enabled = False
else:
assert self.backend == "transformer_engine", f"Invalid backend: {self.backend} for sequence parallelism"
assert (
params["tensor_model_parallel_size"] > 1
), f"Invalid tensor_model_parallel_size: {params['tensor_model_parallel_size']}"
self.sequence_parallel_enabled = True
else:
self.sequence_parallel_enabled = False
if init_weights:
self.init_weights()
# Set default value for peft_last_n_layers and peft_every_n_layers
self.peft_last_n_layers = getattr(params, "peft_last_n_layers", 0)
self.peft_every_n_layers = getattr(params, "peft_every_n_layers", 0)
if self.peft_last_n_layers > 0 or self.peft_every_n_layers > 0:
self._setup_peft()
# Freeze network parameters for finetuning w/ cross-attention
self.has_cross_attention = getattr(params, "insert_cross_attn", False)
if self.has_cross_attention:
self.ca_every_k_layers = getattr(params, "insert_cross_attn_every_k_layers", 1)
self.finetune_layers_with_cross_attn = getattr(params, "finetune_layers_with_cross_attn", False)
self.finetune_layers_without_cross_attn = getattr(params, "finetune_layers_without_cross_attn", False)
self._setup_cross_attn_ft()
if self.params["apply_abs_pos_emb"]:
self.pos_emb_config = self._create_abs_pos_emb_config()
self.pos_emb, self.abs_pos_emb = self._initialize_abs_pos_emb()
if self.attn_input_format == "sbhd":
self.abs_pos_emb = self.abs_pos_emb.transpose(0, 1).contiguous()
self._broadcast_pos_emb(self.abs_pos_emb, tp_group)
def _initialize_pytorch_backend(self, model_parallel):
self.layers = nn.ModuleList(
[
TransformerBlock(layer_id, model_parallel, self.params).to(self.precision)
for layer_id in range(self.n_layers)
]
)
self.norm = create_norm(self.params["norm_type"], dim=self.params["dim"], eps=self.params["norm_eps"]).to(
self.precision
)
pytorch_rope_version = getattr(self.params, "pytorch_rope_version", "v2")
if pytorch_rope_version == "v1":
self.rope = RotaryPositionEmbeddingPytorch(**self.rope_config)
elif pytorch_rope_version == "v2":
training_type = self.tokenizer_config.training_type if self.tokenizer_config is not None else None
self.rope = RotaryPositionEmbeddingPytorchV2(
seq_len=self.params["max_seq_len"], training_type=training_type, **self.rope_config
)
self._broadcast_pos_emb(self.rope.cos_cached, tp_group=self._get_tp_group())
self._broadcast_pos_emb(self.rope.sin_cached, tp_group=self._get_tp_group())
else:
raise ValueError(f"Unknown pytorch_rope_version: {pytorch_rope_version}")
self.causal_mask = torch.tril(
torch.ones(self.params["max_seq_len"], self.params["max_seq_len"], dtype=torch.bool)
).cuda()
def _initialize_transformer_engine_backend(self, tp_group):
self.layers = self._create_transformer_layers(tp_group)
if self.params["sequence_parallel"]:
tp_group = parallel_state.get_tensor_model_parallel_group()
self.norm = AllReduceBWDRMSNormTE(
self.params["dim"],
process_group=tp_group,
eps=self.params["norm_eps"],
sequence_parallel=True,
).to(self.precision)
else:
self.norm = RMSNormTE(self.params["dim"], eps=self.params["norm_eps"]).to(self.precision)
self.rope, self.rotary_pos_emb = self._initialize_rope()
self._broadcast_pos_emb(self.rotary_pos_emb, tp_group)
def _create_rope_config(self) -> Dict:
shape_map = {
"3D": self.params["video_latent_shape"],
"2D": self.params["image_latent_shape"],
"1D": None,
}
latent_shape = shape_map.get(self.params["rope_dim"], None)
head_dim = self.params["head_dim"]
if head_dim is None:
head_dim = self.params["dim"] // self.params["n_heads"]
return {
"dim": head_dim,
"max_position_embeddings": self.params["max_seq_len"],
"original_max_position_embeddings": self.params["original_seq_len"],
"rope_theta": self.params["rope_theta"],
"apply_yarn": self.params["apply_yarn"],
"scale": self.params["yarn_scale"],
"beta_fast": self.params["yarn_beta_fast"],
"beta_slow": self.params["yarn_beta_slow"],
"rope_dim": self.params["rope_dim"],
"latent_shape": latent_shape,
"original_latent_shape": self.params["original_latent_shape"],
"pad_to_multiple_of": self.params["pad_to_multiple_of"],
}
def _create_abs_pos_emb_config(self):
shape_map = {
"3D": self.params["video_latent_shape"],
"2D": self.params["image_latent_shape"],
"1D": None,
}
latent_shape = shape_map.get(self.params["rope_dim"], None)
return {
"dim": self.params["dim"],
"latent_shape": latent_shape,
"pad_to_multiple_of": self.params["pad_to_multiple_of"],
}
def _create_token_embeddings(self, model_parallel=None, vocab_size: int = None):
"""
Create token embeddings.
Args:
model_parallel: The model parallel configuration.
Returns:
nn.Module: Token embeddings module.
"""
if vocab_size is None:
vocab_size = self.params["vocab_size"]
tp_size = self.params["tensor_model_parallel_size"]
if tp_size > 1:
# For inference in the PyTorch backend, we use PyTorch's allreduce (tracable) in the forward pass to enable torch.compile.
use_inference_allreduce = self.inference and self.params["backend"] == "pytorch"
emb = TrainingVocabParallelEmbedding(
vocab_size,
self.params["dim"],
init_method=lambda x: x,
config=model_parallel,
sequence_parallel=self.params["sequence_parallel"],
batch_first=not self.params["sequence_parallel"],
use_inference_allreduce=use_inference_allreduce,
).to(self.precision)
return emb
else:
return nn.Embedding(vocab_size, self.params["dim"]).to(self.precision)
def _create_action_projection(self):
"""
Create the action projection layer.
Returns:
nn.Module: Action projection layer.
"""
assert self.action_embedding_mode == "mlp", f"Invalid action embedding mode: {self.action_embedding_mode}"
# This method is not working well. (option 1. default) exp102e
hidden_dim = self.action_embedding_dim // _MLP_HIDDEN_DIM_DIVISOR
action_embedding_layers = nn.Sequential(
nn.Linear(self.action_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, self.action_embedding_dim),
)
return action_embedding_layers
def _get_tp_group(
self,
):
"""
Get tensor parallel process group if applicable.
Returns:
torch.distributed.ProcessGroup or None: Tensor parallel process group if tensor parallelism is enabled, else None.
"""
if self.params["tensor_model_parallel_size"] > 1:
tp_group = parallel_state.get_tensor_model_parallel_group()
log.info(f"Using tensor model parallel group: {tp_group}")
return tp_group
return None
def _create_transformer_layers(self, tp_group):
"""
Create the transformer layers.
Args:
tp_group (torch.distributed.ProcessGroup or None): Tensor parallel process group.
Returns:
nn.ModuleList: List of transformer layers.
"""
return nn.ModuleList(
[
TransformerBlockTE(
layer_id,
self.params,
tp_group,
set_parallel_mode=self.params["set_parallel_mode"],
attn_input_format=self.attn_input_format,
).to(self.precision)
for layer_id in range(self.params["n_layers"])
]
)
def _create_output_projection(self, model_parallel=None, vocab_size: int = None):
"""
Create the output projection layer.
Args:
model_parallel: The model parallel configuration.
vocab_size (int): Vocabulary size (to override the default vocab size).
Returns:
LinearTE: Output projection layer.
"""
if vocab_size is None:
vocab_size = self.params["vocab_size"]
if self.params["tensor_model_parallel_size"] > 1:
if self.params["backend"] == "pytorch" and self.inference:
tp_size = self.params["tensor_model_parallel_size"]
layer = nn.Linear(self.params["dim"], vocab_size // tp_size, bias=False).to(self.precision)
return layer
else:
layer = ColumnParallelLinear(
self.params["dim"],
vocab_size,
bias=False,
gather_output=False,
init_method=lambda x: x,
config=model_parallel,
).to(self.precision)
return layer
else:
# No Tensor Parallelism
if self.params["backend"] == "pytorch":
return nn.Linear(self.params["dim"], vocab_size, bias=False).to(self.precision)
elif self.params["backend"] == "transformer_engine":
return LinearTE(self.params["dim"], vocab_size, bias=False).to(self.precision)
else:
raise ValueError("Unknown backend: " + self.params["backend"])
def _initialize_rope(
self,
):
"""
Initialize the rotary position embedding.
Returns:
tuple: (RotaryPositionEmbeddingTE, torch.Tensor) The RoPE module and the rotary position embeddings.
"""
rope = RotaryPositionEmbeddingTE(**self.rope_config)
training_type = self.tokenizer_config.training_type if self.tokenizer_config is not None else None
rotary_pos_emb = rope.forward(seq_len=self.params["max_seq_len"], training_type=training_type)
return rope, rotary_pos_emb
def _initialize_abs_pos_emb(self):
pos_emb = SinCosPosEmbAxisTE(**self.pos_emb_config)
training_type = self.tokenizer_config.training_type if self.tokenizer_config is not None else None
abs_pos_emb = pos_emb.forward(training_type=training_type)
return pos_emb, abs_pos_emb
def _broadcast_pos_emb(self, pos_emb, tp_group):
"""
Broadcast the position embeddings across the tensor parallel group.
Args:
pos_emb (torch.Tensor): Position embeddings to broadcast.
tp_group (torch.distributed.ProcessGroup or None): Tensor parallel process group.
"""
if self.params["tensor_model_parallel_size"] > 1:
broadcast(pos_emb, min(get_process_group_ranks(tp_group)), group=tp_group)
def _setup_peft(self):
"""
Set up Parameter Efficient Fine-Tuning (PEFT) by selectively freezing and unfreezing layers.
This method configures the model for fine-tuning by:
1. Freezing all parameters in the model.
2. Unfreezing the embedding, normalization and output layers.
3. Unfreezing the first and last (peft_last_n_layers - 1) transformer layers if peft_last_n_layers is set,
or unfreezing every n layers (flamingo style) if peft_every_n_layers is set.
"""
# Ensure only one of peft_last_n_layers and peft_every_n_layers is set
assert (
self.peft_last_n_layers == 0 or self.peft_every_n_layers == 0
), "Only one of peft_last_n_layers and peft_every_n_layers can be set."
# First, freeze all parameters
for param in self.parameters():
param.requires_grad = False
# Unfreeze embedding, normalization and output layers
for param in self.tok_embeddings.parameters():
param.requires_grad = True
for param in self.norm.parameters():
param.requires_grad = True
for param in self.output.parameters():
param.requires_grad = True
# PEFT last n layers
if self.peft_last_n_layers > 0:
# Ensure peft_last_n_layers is at least 2
assert self.peft_last_n_layers >= 2, "peft_last_n_layers must be at least 2"
# Unfreeze specific transformer layers
total_layers = len(self.layers)
for i, layer in enumerate(self.layers):
if i == 0 or i >= total_layers - self.peft_last_n_layers + 1:
# Unfreeze the first layer and the last (peft_last_n_layers - 1) layers
for param in layer.parameters():
param.requires_grad = True
log.info(
f"PEFT setup complete. Trainable components: embeddings, un-embedding, normalization layer, "
f"first transformer layer, last {self.peft_last_n_layers - 1} transformer layers."
)
# PEFT every n layers (flamingo style, e.g. every 4 layers = layer 0,1,2,4,5,6,... frozen, layer 3,7,11,... is trainable)
else:
trainable_layers = []
for i, layer in enumerate(self.layers, 1):
if i % self.peft_every_n_layers == 0:
for param in layer.parameters():
param.requires_grad = True
trainable_layers.append(i - 1)
log.info(
f"PEFT setup complete. Trainable components: embeddings, un-embedding, normalization layer, "
f"every {self.peft_every_n_layers} transformer layers (layer idx {trainable_layers}; total {len(trainable_layers)} layers)."
)
def _setup_cross_attn_ft(self):
"""
Set up Cross Attention Fine-Tuning by selectively freezing and unfreezing layers.
This method configures the model for fine-tuning by:
1. Freezing all parameters in the model.
2. Unfreezing the embedding, normalization and output layers.
3. Unfreezing all the added cross-attention layers.
4. If `finetune_layers_with_cross_attn` is True, unfreeze the transformer layers for layers with cross attention.
5. If `finetune_layers_without_cross_attn` is True, unfreeze the transformer layers for layers without cross attention.
6. If 'use_action_condition' is True, unfreeze the action embedding layers.
"""
assert self.has_cross_attention, "Must insert cross-attention layers for finetuning."
finetune_layer_num = 0
# First, freeze all parameters
for param in self.parameters():
param.requires_grad = False
# Unfreeze embedding, normalization and output layers
for param in self.tok_embeddings.parameters():
param.requires_grad = True
for param in self.norm.parameters():
param.requires_grad = True
for param in self.output.parameters():
param.requires_grad = True
# Unfreeze all the added cross-attention layers
total_layers = len(self.layers)
for i, layer in enumerate(self.layers):
if i % self.ca_every_k_layers == 0:
if self.params["backend"] == "pytorch":
for param in layer.cross_attention.parameters():
param.requires_grad = True
elif self.params["backend"] == "transformer_engine":
for param in layer.inter_attention.parameters():
param.requires_grad = True
else:
raise ValueError("Unknown backend: " + self.params["backend"])
# Unfreeze the transformer layers for layers with cross attention
if self.finetune_layers_with_cross_attn:
for i, layer in enumerate(self.layers):
if i % self.ca_every_k_layers == 0:
for param in layer.parameters():
param.requires_grad = True
finetune_layer_num += 1
# Unfreeze the transformer layers for layers without cross attention
if self.finetune_layers_without_cross_attn:
for i, layer in enumerate(self.layers):
if i % self.ca_every_k_layers != 0:
for param in layer.parameters():
param.requires_grad = True
finetune_layer_num += 1
# Unfreeze the action embedding layers
if self.use_action_condition:
for param in self.action_embedding_layers.parameters():
param.requires_grad = True
log.info(
f"cross attention finetune setup complete. Trainable components: cross-attention layer, "
f"fully trainable transformer layer number is {finetune_layer_num}."
)
def enable_context_parallel(self, cp_group: ProcessGroup):
"""
Enable context parallelism for the transformer model.
This method sets up context parallelism by configuring the context parallel group
and updating each transformer layer to support context parallelism.
Args:
cp_group (ProcessGroup): The process group for context parallelism.
Notes:
- Updates the model's context parallel group and size.
- Configures each transformer layer for context parallelism.
- Enables context parallelism for the rotary position embedding if using the transformer engine backend.
"""
cp_ranks = get_process_group_ranks(cp_group)
cp_size = len(cp_ranks)
# Set these attributes for spliting the data after embedding.
self.cp_group = cp_group
# Set these attributes for computing the loss.
self.cp_size = cp_size
for layer_idx, layer in enumerate(self.layers):
if isinstance(layer, TransformerBlockTE):
layer.set_context_parallel_group(cp_group, cp_ranks, torch.cuda.Stream())
elif hasattr(layer, "module") and isinstance(layer.module, TransformerBlockTE):
layer.module.set_context_parallel_group(cp_group, cp_ranks, torch.cuda.Stream())
else:
log.warning(f"Layer {layer_idx} does not support context parallelism")
def set_inference_flag(self, flag: bool):
"""
Set the inference flag for the transformer layers.
"""
log.info(f"Setting inference flag to {flag}")
self.inference = flag
if self.inference:
self.eval()
if self.params["backend"] == "pytorch":
for layer in self.layers:
layer.attention.set_inference_flag(flag)
elif self.params["backend"] == "transformer_engine":
for layer in self.layers:
layer.set_inference_flag(flag)
self._maybe_change_sequence_parallel_status(enable=False)
def _maybe_change_sequence_parallel_status(self, enable: bool):
"""
Change the sequence parallel status of the transformer layers.
"""
if enable and not self.sequence_parallel_enabled:
for name, module in self.named_modules():
if hasattr(module, "sequence_parallel"):
assert isinstance(
module.sequence_parallel, bool
), f"Invalid type of {name}: {type(module.sequence_parallel)}"
setattr(module, "sequence_parallel", True)
self.sequence_parallel_enabled = True
elif not enable and self.sequence_parallel_enabled:
for name, module in self.named_modules():
if hasattr(module, "sequence_parallel"):
assert isinstance(
module.sequence_parallel, bool
), f"Invalid type of {name}: {type(module.sequence_parallel)}"
setattr(module, "sequence_parallel", False)
self.sequence_parallel_enabled = False
def forward(
self,
tokens: Optional[torch.Tensor] = None,
input_pos: Optional[torch.Tensor] = None,
inference_params: Optional[InferenceParams] = None,
token_embeddings: Optional[torch.Tensor] = None,
context: Optional[torch.Tensor] = None,
context_mask: Optional[torch.Tensor] = None,
action: Optional[torch.Tensor] = None,
total_seq_len: Optional[int] = None,
return_hidden_states: bool = False,
mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Performs the forward pass of the Transformer module.
Args:
tokens (torch.Tensor, optional): The input tensor of token IDs.
input_pos (Optional[torch.Tensor]): The position of the current sequence. Used in inference with KV cache. PyTorch backend only.
inference_params (InferenceParams, optional): Parameters for inference.
token_embeddings (torch.Tensor, optional): Precomputed token embeddings. If provided, tokens should be None.
context (Optional[torch.Tensor]): The context tensor added via cross-attn.
context_mask (Optional[torch.Tensor]): The context cross-attn mask tensor.
action (Optional[torch.Tensor]): The robot action tensor for conditioning.
total_seq_len (Optional[int]): The total sequence length (before applying context parallelism).
return_hidden_states (bool): Whether to return hidden states.
Returns:
The output tensor after applying the transformer layers.
"""
# Turn on/off sequence parallelism based on the training status
self._maybe_change_sequence_parallel_status(enable=self.training and self.params["sequence_parallel"])
# Token embeddings
assert (
tokens is None or token_embeddings is None
), "Either tokens or token_embeddings should be provided, not both."
if token_embeddings is None:
seq_len = tokens.shape[1]
h = self.token_emb_dropout(self.tok_embeddings(tokens))
else:
seq_len = token_embeddings.shape[1]
h = self.token_emb_dropout(token_embeddings)
if mask is None:
# Create attention mask
mask = self._create_attention_mask(input_pos=input_pos)
# Action embedding
if self.use_action_condition and action is not None:
assert self.action_embedding_mode == "mlp", f"Invalid action embedding mode: {self.action_embedding_mode}"
# change action type to bfloat16, of shape [batch_size, action_dim]
action = action.to(torch.bfloat16)
# action_emb shape: [batch_size, action_dim, action_embedding_dim]
action_emb = self.action_embedding_layers(action).unsqueeze(1).repeat(1, self.action_dim, 1)
# Use action_emb as context
if self.params["concat_action_to_context"]:
context = torch.zeros(
(action_emb.shape[0], _T5_NUM_TOKENS, self.action_embedding_dim), device=h.device, dtype=h.dtype
)
# context[:, -1, :] = action_emb[:, 0, :] # overwrite the last token with action_emb
context = torch.cat([context, action_emb[:, 0:1, :]], dim=1)
else:
context = action_emb # [batch_size, action_dim, action_embedding_dim]
# Create context mask
if self.group_causal_mask_mode is not None:
num_temporal_groups = self.num_video_frames - 1 # number of latent frames
num_query_per_group = seq_len // num_temporal_groups # number of latent tokens per frame
num_key_per_group = self.action_dim // num_temporal_groups
context_mask = create_group_causal_attn_mask(
num_temporal_groups=num_temporal_groups,
num_query_per_group=num_query_per_group,
num_key_per_group=num_key_per_group,
mode=self.group_causal_mask_mode,
) # [L (query), S (key)]
context_mask = context_mask.unsqueeze(0) # [1, L (query), S (key)]
context_mask = context_mask.repeat(context.shape[0], 1, 1) # [batch_size, L (query), S (key)]
context_mask = context_mask.to(context.device)
else:
context_mask = torch.ones(
(context.shape[0], context.shape[1]), device=context.device, dtype=torch.bool
) # [batch_size, action_dim]
# Prepare layer arguments
layer_kwargs = self._prepare_layer_kwargs(
total_seq_len=total_seq_len,
input_pos=input_pos,
mask=mask,
inference_params=inference_params,
context=context,
context_mask=context_mask,
)
# Apply transformer layers
for layer in self.layers:
if self.params["apply_abs_pos_emb"]:
h = self.apply_abs_pos_emb(h, input_pos=input_pos, total_seq_len=total_seq_len)
h = layer(h, **layer_kwargs)
# Apply final layer normalization
h = self.norm(h)
if return_hidden_states:
return h
# Output linear projection
output = self.output(h)
output = self.process_output(output)
return output
def process_output(self, output: torch.Tensor) -> torch.Tensor:
"""
Adjusts the shape and layout of tensor based on tensor parallelism and attention input format.
The function performs two operations:
1. If the tensor model parallelism is enabled (`tensor_model_parallel_size > 1`), it gathers the tensor from
the tensor-parallel regions and reshapes it accordingly.
2. If the attention input format is `"sbhd"` (Sequence, Batch, Hidden Dimension), it transposes the tensor
to the format `(Batch, Sequence, Hidden Dimension)` for further processing.
Args:
output [torch.Tensor]: The tensor before modification.
Returns:
output [torch.Tensor]: The tensor after modification.
"""
if self.params["tensor_model_parallel_size"] > 1:
if self.params["backend"] == "pytorch" and self.inference:
# Use PyTorch all gather
output = funcol.all_gather_tensor(
output, gather_dim=-1, group=parallel_state.get_tensor_model_parallel_group()
)
else:
# [*, *, hidden_dim // tp_size] --> [*, *, hidden_dim]
output = gather_from_tensor_model_parallel_region(output)
if self.attn_input_format == "sbhd":
# [seq_len, batch_size, hidden_dim] --> [batch_size, seq_len, hidden_dim]
output = output.transpose(0, 1).contiguous()
return output
def _create_attention_mask(self, input_pos: Optional[torch.Tensor]) -> Optional[torch.Tensor]:
"""
Creates an attention mask for the transformer layers.
Args:
input_pos[torch.Tensor]: The position of input sequence (used for inference only).
Returns:
Optional[torch.Tensor]: The attention mask, or None for causal mask.
"""
if self.backend == "pytorch" and self.inference:
assert input_pos is not None, "input_pos must be provided for inference"
mask = self.causal_mask[input_pos]
return mask
else:
return None # None means causal mask
def _prepare_layer_kwargs(
self,
total_seq_len: Optional[int],
input_pos: Optional[torch.Tensor],
mask: Optional[torch.Tensor],
inference_params: Optional[InferenceParams],
context: Optional[torch.Tensor],
context_mask: Optional[torch.Tensor],
) -> Dict[str, Any]:
"""
Prepares the keyword arguments for transformer layers.
Args:
total_seq_len (Optional[int]): The total sequence length (before applying context parallelism).
seq_len (Optional[int]): The length of the input sequence.
input_pos (Optional[torch.Tensor]): The position of the current sequence.
mask (Optional[torch.Tensor]): The attention mask.
inference_params (Optional[InferenceParams]): Parameters for inference.
context (Optional[torch.Tensor]): The context tensor added via cross-attn.
context_mask (Optional[torch.Tensor]): The context cross-attn mask tensor.
Returns:
Dict[str, Any]: A dictionary of keyword arguments for the transformer layers.
"""
if context is not None:
context = context.to(self.precision)
if self.attn_input_format == "sbhd":
context = context.transpose(0, 1).contiguous()
if self.backend == "pytorch":
if isinstance(mask, torch.Tensor) and mask.ndim == 2:
mask = mask[None, None, :, :]
if isinstance(context_mask, torch.Tensor) and context_mask.ndim == 2:
context_mask = context_mask[None, None, :, :]
layer_kwargs = {
"mask": mask,
"context": context,
"context_mask": context_mask,
}
if self.backend == "pytorch":
layer_kwargs["input_pos"] = input_pos
layer_kwargs["rope"] = self.rope
elif self.backend == "transformer_engine":
rotary_pos_emb = self.rotary_pos_emb
try:
cp_size = parallel_state.get_context_parallel_world_size()
except (AssertionError, RuntimeError):
# Fallback if context parallel group isn't initialized
cp_size = 1
log.warning("Context parallel group not initialized, falling back to size 1")
else:
cp_size = 1
if cp_size > 1:
assert input_pos is None, "input_pos must be None for context parallelism"
rotary_pos_emb = rotary_pos_emb[:total_seq_len]
rotary_pos_emb = get_pos_emb_on_this_cp_rank(rotary_pos_emb, 0)
layer_kwargs["rotary_pos_emb"] = rotary_pos_emb
layer_kwargs["inference_params"] = inference_params
return layer_kwargs
def apply_abs_pos_emb(
self, x: torch.Tensor, input_pos: int = None, total_seq_len: Optional[int] = None
) -> torch.Tensor:
"""
Applies the absolute position embeddings to the input tensor.
"""
abs_pos_emb = self.abs_pos_emb
if total_seq_len is not None:
# Truncate the absolute position embeddings to the total sequence length
abs_pos_emb = (
abs_pos_emb[:total_seq_len, :, :]
if self.attn_input_format == "sbhd"
else abs_pos_emb[:, :total_seq_len, :]
)
cp_size = parallel_state.get_context_parallel_world_size() if self.training else 1
if cp_size > 1:
assert input_pos is None
seq_dim = 0 if self.attn_input_format == "sbhd" else 1
abs_pos_emb = get_pos_emb_on_this_cp_rank(abs_pos_emb, seq_dim=seq_dim)
if self.attn_input_format == "sbhd":
if self.sequence_parallel_enabled:
# Training
assert input_pos is None, "input_pos must be None when training with sequence parallelism"
abs_pos_emb = get_pos_emb_on_this_sptp_rank(abs_pos_emb, seq_dim=0)
else:
# Inference or Evaluation
abs_pos_emb = abs_pos_emb[input_pos, :, :] if input_pos is not None else abs_pos_emb
else:
abs_pos_emb = abs_pos_emb[:, input_pos, :] if input_pos is not None else abs_pos_emb
return x + abs_pos_emb
@torch.no_grad()
def expand_vocab(
self, new_vocab_size: int, init_method: str = "gaussian", multiple_of=64, expand_output_layer=True
):
"""
Expands the vocabulary of the model to the new size.
Args:
new_vocab_size (int): The new vocabulary size.
init_method (str): The initialization method for new embeddings.
Can be "zero" or "gaussian". Default is "gaussian".
multiple_of (int): The new vocabulary size must be a multiple of this value. Defaults to 64 to fully
leverage the power of NVIDIA TensorCore (source 1: https://x.com/karpathy/status/1621578354024677377,
source 2: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc)
expand_output_layer (bool): Whether to also expand the output layer. Defaults to True.
Returns:
None
"""
tp_size = self.params["tensor_model_parallel_size"]
if new_vocab_size <= self.vocab_size:
raise ValueError(
f"New vocabulary size ({new_vocab_size}) must be " f"larger than current size ({self.vocab_size})"
)
if new_vocab_size % multiple_of != 0:
log.critical(f"New vocabulary size must be a multiple of {multiple_of}. Obtained {new_vocab_size}.")
new_vocab_size = (new_vocab_size // multiple_of + 1) * multiple_of
log.critical(f"Rounded vocabulary size to {new_vocab_size}.")
# Resize token embeddings
old_embeddings = self.tok_embeddings
old_embeddings_requires_grad = old_embeddings.weight.requires_grad
tensor_kwargs = {"device": old_embeddings.weight.device, "dtype": old_embeddings.weight.dtype}
self.tok_embeddings = self._create_token_embeddings(
model_parallel=self.model_parallel, vocab_size=new_vocab_size
).to(**tensor_kwargs)
# Initialize new embeddings
if init_method not in ["zero", "gaussian"]:
raise ValueError(f"Unknown initialization method: {init_method}")
# The default initialization of nn.Embedding is Gaussian, so we don't need to do anything
# if init_method == "gaussian". Only if init_method == "zero", we need to zero out the new embeddings.
if init_method == "zero":
self.tok_embeddings.weight.data[self.vocab_size // tp_size :].zero_()
# Copy old embeddings
log.info(
f"old_embeddings: {old_embeddings.weight.data.shape}, new_embeddings: {self.tok_embeddings.weight.data.shape}, vocab_size: {self.vocab_size}"
)
self.tok_embeddings.weight.data[: self.vocab_size // tp_size] = old_embeddings.weight.data
self.tok_embeddings.weight.requires_grad = old_embeddings_requires_grad
# Resize output layer
old_output = self.output
old_output_requires_grad = old_output.weight.requires_grad
self.output = self._create_output_projection(
self.model_parallel, vocab_size=new_vocab_size if expand_output_layer else None
)
# Initialize new output weights
if init_method == "zero":
self.output.weight.data[self.vocab_size // tp_size :].zero_()
elif init_method == "gaussian":
# Follows the parameter initialization in TorchTitan:
# https://github.com/pytorch/torchtitan/blob/main/torchtitan/models/llama/model.py
final_out_std = self.params["dim"] ** -0.5
cutoff_factor = 3
nn.init.trunc_normal_(
self.output.weight,
mean=0.0,
std=final_out_std,
a=-cutoff_factor * final_out_std,
b=cutoff_factor * final_out_std,
)
# Copy old output weights
self.output.weight.data[: self.vocab_size // tp_size] = old_output.weight.data
self.output.weight.requires_grad = old_output_requires_grad
# Update vocab size
self.vocab_size = new_vocab_size
log.critical(f"Expanded vocabulary size to {new_vocab_size}")
def init_weights(self):
"""
[Note: On ``init_weights`` vs. ``reset_parameters`` (copied from github.com/pytorch/torchtitan)]
Modules may define ``reset_parameters`` to initialize parameter values. ``reset_parameters`` is meant to only
initialize directly owned parameters/buffers, not those of their child modules, and it can be used to give the
initial values for these tensors. Separately, users may want custom initialization for their modules, different
from that in ``reset_parameters``. For this, we define ``init_weights``. We only call it in the constructor of
this ``Transformer`` root module to avoid reinitializing tensors.
"""
nn.init.normal_(self.tok_embeddings.weight)
for layer in self.layers:
layer.init_weights()
if self.backend == "pytorch":
self.norm.reset_parameters()
elif self.backend == "transformer_engine":
nn.init.ones_(self.norm.weight)
else:
raise ValueError(f"Unknown backend: {self.backend}")
final_out_std = self.params["dim"] ** -0.5
cutoff_factor = 3
nn.init.trunc_normal_(
self.output.weight,
mean=0.0,
std=final_out_std,
a=-cutoff_factor * final_out_std,
b=cutoff_factor * final_out_std,
)
if self.use_action_condition:
for layer in self.action_embedding_layers:
if isinstance(layer, nn.Linear):
nn.init.xavier_uniform_(layer.weight)
nn.init.zeros_(layer.bias)
def state_dict(self, *args, **kwargs):
"""
Process the state dict (e.g., remove "_extra_state" keys imposed by TransformerEngine for FP8).
"""
state_dict = super().state_dict(*args, **kwargs)
return process_state_dict(state_dict)
def load_state_dict(self, state_dict: Dict[str, Any], strict: bool = True, assign: bool = False):
"""
Ignore the missing keys with substrings matching `substring_to_ignore` (e.g., "_extra_state" keys imposed by
TransformerEngine for FP8).
"""
state_dict = process_state_dict(state_dict)
missing_keys, unexpected_keys = super().load_state_dict(state_dict, strict=False, assign=assign)
if strict:
actual_missing_keys = []
for key in missing_keys:
if not any(substring in key for substring in substrings_to_ignore):
actual_missing_keys.append(key)
if len(actual_missing_keys) > 0 or len(unexpected_keys) > 0:
raise ValueError(f"Missing keys: {actual_missing_keys}\n\nUnexpected keys: {unexpected_keys}")
missing_keys = actual_missing_keys
return _IncompatibleKeys(missing_keys, unexpected_keys)
def on_after_backward(self, *args, **kwargs):
"""
All-reduce layernorm grads for tensor/sequence parallelism.
Reference implementation: https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/distributed/finalize_model_grads.py
"""
allreduce_layernorm_grads(
[self],
tensor_model_parallel_size=self.params["tensor_model_parallel_size"],
sequence_parallel=self.params["sequence_parallel"],
)
def on_before_zero_grad(
self, optimizer: torch.optim.Optimizer, scheduler: torch.optim.lr_scheduler.LRScheduler, iteration: int
) -> None:
"""Hook before zero_grad() is called.
Args:
optimizer (torch.optim.Optimizer): The model optimizer.
scheduler (torch.optim.lr_scheduler.LRScheduler): The optimization scheduler.
iteration (int): Current iteration number.
"""
if self.params["sync_1d_parameters"]:
if self.params["tensor_model_parallel_size"] > 1:
sync_1d_parameters(self, process_group=parallel_state.get_tensor_model_parallel_group())
if self.params["context_parallel_size"] > 1:
sync_1d_parameters(self, process_group=parallel_state.get_context_parallel_group())
|