Spaces:
Build error
Build error
File size: 28,189 Bytes
b6af722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Optional
import torch
from cosmos_predict1.utils import log
# Substrings to ignore when processing state dicts
substrings_to_ignore = [
"_extra_state", # Extra states (BytesIO type) added by TransformerEngine for FP8 handling
]
def identify_checkpoint_backend(state_dict: dict[str, torch.Tensor]) -> str:
"""
Identify the backend of the checkpoint (PyTorch or TransformerEngine)
Args:
state_dict (dict[str, torch.Tensor]): The state dict to check
Returns:
str: The backend of the checkpoint
"""
for key in state_dict.keys():
if "self_attention.layernorm_qkv.query_weight" in key:
return "transformer_engine"
elif "attention.wq.weight" in key:
return "pytorch"
raise ValueError("Could not identify the backend of the checkpoint")
def get_partial_state_dict(
state_dict: dict[str, torch.Tensor],
prefix: str,
) -> dict[str, torch.Tensor]:
"""
Get a partial state dict with keys starting with the given prefix
"""
return {k: v for k, v in state_dict.items() if k.startswith(prefix)}
def process_state_dict(
state_dict: dict[str, torch.Tensor],
device: str = None,
dtype: torch.dtype = None,
prefix_to_remove: Optional[str] = None,
) -> dict[str, torch.Tensor]:
"""
- Remove items with substring "_extra_state" in keys (TransformerEngine adds these for FP8)
- Move tensors to specified device and dtype if provided
Args:
state_dict (dict[str, torch.Tensor]): The state dict to process
device (str, optional): The device to move tensors to. Defaults to None.
dtype (torch.dtype, optional): The dtype to move tensors to. Defaults to None.
prefix_to_remove (str, optional): The prefix to remove from the keys of the state dict. Defaults to None.
Returns:
dict[str, torch.Tensor]: The processed state dict
"""
new_state_dict = {}
tensor_kwargs = {}
if device is not None:
tensor_kwargs["device"] = device
if dtype is not None:
tensor_kwargs["dtype"] = dtype
for key, value in state_dict.items():
# Check if any of the substrings to ignore are in the key
skip = False
for substr in substrings_to_ignore:
if substr in key:
skip = True
break
if skip:
continue
if len(tensor_kwargs) > 0:
value = value.to(**tensor_kwargs)
if prefix_to_remove is not None and key.startswith(prefix_to_remove):
key = key[len(prefix_to_remove) :]
new_state_dict[key] = value
return new_state_dict
def obtain_tensor_parallel_state_dict(
whole_model_state_dict: dict[str, torch.Tensor],
tensor_parallel_size: int,
tensor_parallel_rank: int,
model_config,
target_backend: str = None,
) -> dict[str, torch.Tensor]:
"""
Obtain the tensor parallel state dict shard for the current rank.
Args:
whole_model_state_dict (dict[str, torch.Tensor]): The complete model state dict.
tensor_parallel_size (int): The number of tensor parallel devices.
tensor_parallel_rank (int): The rank of the current tensor parallel device.
model_config: The model configuration.
target_backend (str, optional): The target backend format ('pytorch', 'transformer_engine', or 'huggingface'). If not specified, the source backend will be used.
Returns:
dict[str, torch.Tensor]: The updated state dict shard for the current tensor parallel rank.
"""
new_state_dict_shard = {}
whole_model_state_dict = process_state_dict(whole_model_state_dict)
source_backend = identify_checkpoint_backend(whole_model_state_dict)
if source_backend != "pytorch":
# Convert the checkpoint to PyTorch backend for checkpoint sharding
whole_model_state_dict = maybe_convert_checkpoint_to_backend(
whole_model_state_dict, target_backend="pytorch", model_config=model_config, source_backend=source_backend
)
n_heads = model_config["n_heads"]
n_kv_heads = model_config["n_kv_heads"]
dim = model_config["dim"]
context_dim = model_config["context_dim"]
for key, value in whole_model_state_dict.items():
prefix = "model." if key.startswith("model.") else "" # LLM's model prefix
prefix = "transformer." if key.startswith("transformer.") else prefix # VIT's model prefix
key = key.replace(prefix, "")
if key.startswith("layers."):
layer_index = int(key.split("layers.")[1].split(".")[0])
if layer_index >= model_config["n_layers"]:
log.warning(
f"Layer index {layer_index} is greater than the number of layers {model_config['n_layers']}. Skipping this layer."
)
continue
if ".attention.wq.weight" in key or "cross_attention.wq.weight" in key:
value = torch.chunk(value.view(n_heads, -1, dim), tensor_parallel_size, dim=0)[tensor_parallel_rank]
value = value.reshape(-1, dim)
elif ".attention.wk.weight" in key or ".attention.wv.weight" in key:
value = torch.chunk(value.view(n_kv_heads, -1, dim), tensor_parallel_size, dim=0)[tensor_parallel_rank]
value = value.reshape(-1, dim)
elif "cross_attention.wk.weight" in key or "cross_attention.wv.weight" in key:
assert context_dim is not None
value = torch.chunk(value.view(n_kv_heads, -1, context_dim), tensor_parallel_size, dim=0)[
tensor_parallel_rank
]
value = value.reshape(-1, context_dim)
elif "feed_forward.w1.weight" in key or "feed_forward.w3.weight" in key or "medusa_head" in key:
value = torch.chunk(value, tensor_parallel_size, dim=0)[tensor_parallel_rank]
elif "feed_forward.w2.weight" in key or ".attention.wo.weight" in key or "cross_attention.wo.weight" in key:
value = torch.chunk(value, tensor_parallel_size, dim=1)[tensor_parallel_rank]
else:
# Handle non-layer weights
if key == "tok_embeddings.weight" or key == "output.weight" or "medusa_head" in key:
value = torch.chunk(value, tensor_parallel_size, dim=0)[tensor_parallel_rank]
new_state_dict_shard[prefix + key] = value
if target_backend is None:
target_backend = source_backend
new_state_dict_shard = maybe_convert_checkpoint_to_backend(
new_state_dict_shard,
target_backend=target_backend,
model_config=model_config,
is_tensor_parallel_shard=True,
tensor_parallel_size=tensor_parallel_size,
)
return new_state_dict_shard
def merge_tensor_parallel_state_dicts(
state_dict_shards: list[dict[str, torch.Tensor]],
model_config,
target_backend: str = None,
) -> dict[str, torch.Tensor]:
"""
Merge tensor parallel state dict shards into a whole model state dict.
Args:
state_dict_shards (List[Dict[str, torch.Tensor]]): The list of state dict shards to merge.
model_config: The model configuration.
target_backend (str, optional): The target backend format ('pytorch', 'transformer_engine', or 'huggingface'). If not specified, the source backend will be used.
Returns:
Dict[str, torch.Tensor]: The merged state dict.
"""
state_dict_shards = [process_state_dict(shard, device="cpu") for shard in state_dict_shards]
tensor_parallel_size = len(state_dict_shards)
source_backend = identify_checkpoint_backend(state_dict_shards[0])
if source_backend != "pytorch":
log.critical(f"Converting from {source_backend} to PyTorch backend for tensor parallel checkpoint merging.")
state_dict_shards = [
maybe_convert_checkpoint_to_backend(
shard,
target_backend="pytorch",
model_config=model_config,
source_backend=source_backend,
is_tensor_parallel_shard=True,
tensor_parallel_size=tensor_parallel_size,
)
for shard in state_dict_shards
]
n_heads = model_config["n_heads"]
n_kv_heads = model_config["n_kv_heads"]
n_local_heads = n_heads // tensor_parallel_size
n_local_kv_heads = n_kv_heads // tensor_parallel_size
dim = model_config["dim"]
context_dim = model_config["context_dim"]
head_dim = model_config["head_dim"]
if head_dim is None:
head_dim = model_config["dim"] // model_config["n_heads"]
query_dim = head_dim * n_heads
key_value_dim = head_dim * n_kv_heads
merged_state_dict = {}
for key in state_dict_shards[0].keys():
prefix = "model." if key.startswith("model.") else ""
key_without_prefix = key[len(prefix) :]
if key_without_prefix.startswith("layers."):
layer_index = int(key_without_prefix.split("layers.")[1].split(".")[0])
if layer_index >= model_config["n_layers"]:
log.warning(
f"Layer index {layer_index} is greater than the number of layers {model_config['n_layers']}. Skipping this layer."
)
continue
if key_without_prefix == "tok_embeddings.weight" or key_without_prefix == "output.weight":
merged_state_dict[key] = torch.cat([shard[key] for shard in state_dict_shards], dim=0)
elif ".attention.wq.weight" in key or "cross_attention.wq.weight" in key:
chunks = [shard[key].view(n_local_heads, head_dim, dim) for shard in state_dict_shards]
merged_state_dict[key] = torch.cat(chunks, dim=0).reshape(query_dim, dim)
elif ".attention.wk.weight" in key or ".attention.wv.weight" in key:
chunks = [shard[key].view(n_local_kv_heads, head_dim, dim) for shard in state_dict_shards]
merged_state_dict[key] = torch.cat(chunks, dim=0).reshape(key_value_dim, dim)
elif "cross_attention.wk.weight" in key or "cross_attention.wv.weight" in key:
chunks = [shard[key].view(n_local_kv_heads, head_dim, context_dim) for shard in state_dict_shards]
merged_state_dict[key] = torch.cat(chunks, dim=0).reshape(key_value_dim, context_dim)
elif "feed_forward.w1.weight" in key or "feed_forward.w3.weight" in key or "medusa_head" in key:
merged_state_dict[key] = torch.cat([shard[key] for shard in state_dict_shards], dim=0)
elif "feed_forward.w2.weight" in key or ".attention.wo.weight" in key or "cross_attention.wo.weight" in key:
merged_state_dict[key] = torch.cat([shard[key] for shard in state_dict_shards], dim=1)
else:
avg_tensor = torch.stack([shard[key] for shard in state_dict_shards]).mean(dim=0)
# make sure shard-0 is close to the average tensor
assert torch.allclose(state_dict_shards[0][key], avg_tensor, atol=5e-2, rtol=0.1), (
f"Shard-0 tensor {key} is not close to the average tensor. "
f"Max diff: {torch.max(torch.abs(state_dict_shards[0][key] - avg_tensor))}, "
)
merged_state_dict[key] = avg_tensor
assert "norm" in key, f"Assumed the key {key} is a norm layer, which should be the same across shards."
if target_backend is None:
target_backend = source_backend
return maybe_convert_checkpoint_to_backend(
merged_state_dict, target_backend=target_backend, model_config=model_config
)
def te_to_pytorch_state_dict(
te_state_dict: Dict[str, torch.Tensor], model_config, tensor_parallel_size: int = 1
) -> Dict[str, torch.Tensor]:
"""
Convert a TransformerEngine state dict to PyTorch state dict
Args:
te_state_dict (Mapping[str, torch.Tensor]): The TransformerEngine state dict
model_config: The model configuration
tensor_parallel_size (int): The tensor parallel size. Defaults to 1 (i.e., not a tensor parallel shard).
Returns:
Mapping[str, torch.Tensor]: The PyTorch state dict
"""
if hasattr(model_config, "asdict"):
model_config = model_config.asdict()
pytorch_state_dict = {}
replacement_rules = [
# Self-attention modules
(".self_attention.layernorm_qkv.layer_norm_weight", ".attention_norm.weight"),
(".self_attention.layernorm_qkv.query_weight", ".attention.wq.weight"),
(".self_attention.layernorm_qkv.key_weight", ".attention.wk.weight"),
(".self_attention.layernorm_qkv.value_weight", ".attention.wv.weight"),
(".self_attention.proj.weight", ".attention.wo.weight"),
(".self_attention.", ".attention."), # Handle the rest modules such as q_norm and k_norm
# MLP modules
(".layernorm_mlp.layer_norm_weight", ".ffn_norm.weight"),
(".layernorm_mlp.fc2_weight", ".feed_forward.w2.weight"),
# Cross-attention modules
(".inter_attention.layernorm_query.query_weight", ".cross_attention.wq.weight"),
(".inter_attention.key_value.key_weight", ".cross_attention.wk.weight"),
(".inter_attention.key_value.value_weight", ".cross_attention.wv.weight"),
(".inter_attention.proj.weight", ".cross_attention.wo.weight"),
(".inter_attention.layernorm_query.layer_norm_weight", ".cross_attention_norm.weight"),
(".inter_attention.", ".cross_attention."), # Handle the rest modules such as q_norm and k_norm
]
head_dim = model_config["head_dim"]
if head_dim is None:
head_dim = model_config["dim"] // model_config["n_heads"]
for old_key, value in te_state_dict.items():
new_key = old_key
for old_substr, new_substr in replacement_rules:
if old_substr in new_key:
new_key = new_key.replace(old_substr, new_substr)
break
# Handle the fused w1 and w3 case
if "layernorm_mlp.fc1_weight" in old_key:
fused_weight = value
split_point = fused_weight.shape[0] // 2
w1_weight = fused_weight[:split_point]
w3_weight = fused_weight[split_point:]
w1_key = new_key.replace("layernorm_mlp.fc1_weight", "feed_forward.w1.weight")
w3_key = new_key.replace("layernorm_mlp.fc1_weight", "feed_forward.w3.weight")
pytorch_state_dict[w1_key] = w1_weight
pytorch_state_dict[w3_key] = w3_weight
else:
if model_config["pytorch_rope_version"] == "v1":
# If the model use qk normalization, we will use the same PyTorch RoPE operations as the TE version.
# Thus, we do not need to permute the weights.
if "query_weight" in old_key:
value = inverse_permute_weight(
value,
n_heads=model_config["n_heads"] // tensor_parallel_size,
dim1=head_dim * model_config["n_heads"] // tensor_parallel_size,
dim2=model_config["dim"],
)
elif "key_weight" in old_key:
value = inverse_permute_weight(
value,
n_heads=model_config["n_kv_heads"] // tensor_parallel_size,
dim1=head_dim * model_config["n_kv_heads"] // tensor_parallel_size,
dim2=model_config["context_dim"] if "inter_attention" in old_key else model_config["dim"],
)
pytorch_state_dict[new_key] = value
return pytorch_state_dict
def pytorch_to_te_state_dict(
pytorch_state_dict: Dict[str, torch.Tensor], model_config, tensor_parallel_size: int = 1
) -> Dict[str, torch.Tensor]:
"""
Convert a PyTorch state dict to TransformerEngine state dict
Args:
pytorch_state_dict (Mapping[str, torch.Tensor]): The PyTorch state dict
model_config: The model configuration
tensor_parallel_size (int): The tensor parallel size. Defaults to 1 (i.e., not a tensor parallel shard).
Returns:
Mapping[str, torch.Tensor]: The TransformerEngine
"""
if hasattr(model_config, "asdict"):
model_config = model_config.asdict()
te_state_dict = {}
replacement_rules = [
# Self-attention modules
(".attention_norm.weight", ".self_attention.layernorm_qkv.layer_norm_weight"),
(".attention.wq.weight", ".self_attention.layernorm_qkv.query_weight"),
(".attention.wk.weight", ".self_attention.layernorm_qkv.key_weight"),
(".attention.wv.weight", ".self_attention.layernorm_qkv.value_weight"),
(".attention.wo.weight", ".self_attention.proj.weight"),
(".attention.", ".self_attention."),
# MLP modules
(".ffn_norm.weight", ".layernorm_mlp.layer_norm_weight"),
(".feed_forward.w2.weight", ".layernorm_mlp.fc2_weight"),
# Cross-attention modules
(".cross_attention_norm.weight", ".inter_attention.layernorm_query.layer_norm_weight"),
(".cross_attention.wq.weight", ".inter_attention.layernorm_query.query_weight"),
(".cross_attention.wk.weight", ".inter_attention.key_value.key_weight"),
(".cross_attention.wv.weight", ".inter_attention.key_value.value_weight"),
(".cross_attention.wo.weight", ".inter_attention.proj.weight"),
(".cross_attention.", ".inter_attention."),
]
head_dim = model_config["head_dim"]
if head_dim is None:
head_dim = model_config["dim"] // model_config["n_heads"]
for old_key, value in pytorch_state_dict.items():
new_key = old_key
for new_substr, old_substr in replacement_rules:
if new_substr in new_key:
new_key = new_key.replace(new_substr, old_substr)
break
# Handle the split w1 and w3 case
if "feed_forward.w1.weight" in old_key:
w1_weight = value
w3_key = old_key.replace("feed_forward.w1.weight", "feed_forward.w3.weight")
if w3_key in pytorch_state_dict:
w3_weight = pytorch_state_dict[w3_key]
fused_weight = torch.cat([w1_weight, w3_weight], dim=0)
new_key = new_key.replace("feed_forward.w1.weight", "layernorm_mlp.fc1_weight")
te_state_dict[new_key] = fused_weight
else:
te_state_dict[new_key] = value
elif "feed_forward.w3.weight" in old_key:
# Skip w3 weights as they're handled with w1
continue
else:
if model_config["pytorch_rope_version"] == "v1":
# If the model use qk normalization, we will use the same PyTorch RoPE operations as the TE version.
# Thus, we do not need to permute the weights.
if "attention.wq" in old_key:
value = permute_weight(
value,
n_heads=model_config["n_heads"] // tensor_parallel_size,
dim1=head_dim * model_config["n_heads"] // tensor_parallel_size,
dim2=model_config["dim"],
)
elif "attention.wk" in old_key:
value = permute_weight(
value,
n_heads=model_config["n_kv_heads"] // tensor_parallel_size,
dim1=head_dim * model_config["n_kv_heads"] // tensor_parallel_size,
dim2=model_config["context_dim"] if "cross_attention" in old_key else model_config["dim"],
)
te_state_dict[new_key] = value
return te_state_dict
def permute_weight(w: torch.Tensor, n_heads: int, dim1: int, dim2: int) -> torch.Tensor:
"""
Helper function for converting checkpoints from PyTorch to TransformerEngine
Permute the query weight or key weight of each attention layer
Source: https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py
Args:
w (torch.Tensor): The weight tensor to permute
n_heads (int): The number of attention heads
dim1 (int): The first dimension of the weight tensor
dim2 (int): The second dimension of the weight tensor
Returns:
torch.Tensor: The permuted weight tensor
"""
return w.view(n_heads, dim1 // n_heads // 2, 2, dim2).transpose(1, 2).reshape(dim1, dim2)
def inverse_permute_weight(w: torch.Tensor, n_heads: int, dim1: int, dim2: int) -> torch.Tensor:
"""
Helper function for converting checkpoints from TransformerEngine to PyTorch
Permute the query weight or key weight of each attention layer
Args:
w (torch.Tensor): The weight tensor to permute
n_heads (int): The number of attention heads
dim1 (int): The first dimension of the weight tensor
dim2 (int): The second dimension of the weight tensor
Returns:
torch.Tensor: The permuted weight tensor
"""
return w.view(n_heads, 2, dim1 // n_heads // 2, dim2).transpose(1, 2).reshape(dim1, dim2)
def pytorch_to_hf_state_dict(
state_dict: Dict[str, torch.Tensor], model_config: Dict[str, Any], tensor_parallel_size: int = 1
) -> Dict[str, torch.Tensor]:
"""
Convert a PyTorch state dict to HuggingFace format for LLM models.
Args:
state_dict (Mapping[str, torch.Tensor]):
The original PyTorch model's state dictionary.
This is a mapping where keys are layer names and values are the corresponding PyTorch tensors
containing the model weights.
model_config (Mapping[str, Any]):
The configuration of the model. This dictionary contains parameters such as:
- n_layers: (int) The number of transformer layers.
- n_heads: (int) The number of attention heads.
- dim: (int) The hidden size of the model.
- n_kv_heads: (int, optional) The number of key-value heads for multi-query attention.
Returns:
Mapping[str, torch.Tensor]:
The converted HuggingFace state dictionary. This dictionary maps HuggingFace transformer-compatible
layer names to the corresponding model weights.
"""
not_supported_key_substrings = ["cross_attention", "q_norm", "k_norm"]
for key in state_dict.keys():
if any(substr in key for substr in not_supported_key_substrings):
raise ValueError(f"Key {key} is not supported in HuggingFace format.")
assert tensor_parallel_size == 1, "Tensor parallel size > 1 is not supported for HuggingFace model export."
hf_state_dict = {}
n_layers = model_config["n_layers"]
n_heads = model_config["n_heads"]
dim = model_config["dim"]
head_dim = model_config["head_dim"]
if head_dim is None:
head_dim = model_config["dim"] // model_config["n_heads"]
num_key_value_heads = model_config.get("n_kv_heads", n_heads)
key_value_dim = head_dim * num_key_value_heads
for layer_i in range(n_layers):
pt_prefix = f"layers.{layer_i}."
hf_prefix = f"model.layers.{layer_i}."
wq = state_dict[f"{pt_prefix}attention.wq.weight"]
wk = state_dict[f"{pt_prefix}attention.wk.weight"]
if model_config["pytorch_rope_version"] == "v1":
wq = permute_weight(
wq,
n_heads=n_heads,
dim1=dim,
dim2=dim,
)
wk = permute_weight(
wk,
n_heads=num_key_value_heads,
dim1=key_value_dim,
dim2=dim,
)
hf_state_dict[f"{hf_prefix}self_attn.q_proj.weight"] = wq
hf_state_dict[f"{hf_prefix}self_attn.k_proj.weight"] = wk
hf_state_dict[f"{hf_prefix}self_attn.v_proj.weight"] = state_dict[f"{pt_prefix}attention.wv.weight"]
hf_state_dict[f"{hf_prefix}self_attn.o_proj.weight"] = state_dict[f"{pt_prefix}attention.wo.weight"]
hf_state_dict[f"{hf_prefix}mlp.gate_proj.weight"] = state_dict[f"{pt_prefix}feed_forward.w1.weight"]
hf_state_dict[f"{hf_prefix}mlp.down_proj.weight"] = state_dict[f"{pt_prefix}feed_forward.w2.weight"]
hf_state_dict[f"{hf_prefix}mlp.up_proj.weight"] = state_dict[f"{pt_prefix}feed_forward.w3.weight"]
hf_state_dict[f"{hf_prefix}input_layernorm.weight"] = state_dict[f"{pt_prefix}attention_norm.weight"]
hf_state_dict[f"{hf_prefix}post_attention_layernorm.weight"] = state_dict[f"{pt_prefix}ffn_norm.weight"]
# Add non-layer weights
hf_state_dict["model.embed_tokens.weight"] = state_dict["tok_embeddings.weight"]
hf_state_dict["model.norm.weight"] = state_dict["norm.weight"]
hf_state_dict["lm_head.weight"] = state_dict["output.weight"]
return hf_state_dict
def maybe_convert_checkpoint_to_backend(
state_dict: Dict[str, torch.Tensor],
target_backend: str,
model_config,
source_backend: str = None,
is_tensor_parallel_shard: bool = False,
tensor_parallel_size: int = None,
):
"""
Identify the backend of the checkpoint and convert to the target backend if necessary.
This function checks the current backend of the state_dict and converts it to the target backend
if they don't match. It supports conversions between PyTorch, TransformerEngine, and HuggingFace backends.
Args:
state_dict (Dict[str, torch.Tensor]): The model state dictionary to convert.
target_backend (str): The desired backend format ('pytorch', 'transformer_engine', or 'huggingface').
model_config: Configuration of the model, used in conversion process.
source_backend (str, optional): The current backend of the state_dict. If not specified, the function will identify the backend.
is_tensor_parallel_shard (bool, optional): Whether the state_dict is a tensor parallel shard. Defaults to False.
tensor_parallel_size (int, optional): The tensor parallel size. If not specified, the model_config will be modified.
Returns:
Dict[str, torch.Tensor]: The converted state dictionary in the target backend format.
Raises:
ValueError: If the conversion between the identified backend and target backend is not supported.
"""
# Identify the current backend of the checkpoint
state_dict = process_state_dict(state_dict) # Remove unnecessary keys
if source_backend is None:
source_backend = identify_checkpoint_backend(state_dict)
if source_backend == target_backend:
return state_dict
else:
if tensor_parallel_size is None:
tensor_parallel_size = model_config["tensor_parallel_size"] if is_tensor_parallel_shard else 1
# Convert to target backend
if source_backend == "pytorch" and target_backend == "transformer_engine":
return pytorch_to_te_state_dict(state_dict, model_config, tensor_parallel_size=tensor_parallel_size)
elif source_backend == "transformer_engine" and target_backend == "pytorch":
return te_to_pytorch_state_dict(state_dict, model_config, tensor_parallel_size=tensor_parallel_size)
elif source_backend == "pytorch" and target_backend == "huggingface":
return pytorch_to_hf_state_dict(state_dict, model_config, tensor_parallel_size=tensor_parallel_size)
else:
raise ValueError(f"Conversion from {source_backend} to {target_backend} is not supported.")
|