Spaces:
Build error
Build error
File size: 20,544 Bytes
b6af722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import threading
from collections import namedtuple
from typing import Any, Dict, Optional, Set, Tuple, Union
import torch
import torch.distributed
from megatron.core import parallel_state
from torch.distributed import ProcessGroup, get_process_group_ranks
from cosmos_predict1.checkpointer.base import AbstractCheckpointer
from cosmos_predict1.checkpointer.safe_broadcast import broadcast_object
from cosmos_predict1.utils import distributed, log, misc
from cosmos_predict1.utils.easy_io import easy_io
from cosmos_predict1.utils.model import Model
StateDictItemPath = namedtuple("StateDictItemPath", ["state_dict", "save_path"])
class Checkpointer(AbstractCheckpointer):
"""
Checkpointer for DDP.
Note: This implementation only supports local filesystem.
"""
KEYS_TO_SAVE = ["model", "optim", "scheduler", "trainer"]
KEYS_TO_POSTFIX = {
"model": "model",
"optim": "optim",
"scheduler": "scheduler",
"trainer": "",
}
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
pp_world_size = parallel_state.get_pipeline_model_parallel_world_size()
ep_world_size = parallel_state.get_expert_model_parallel_world_size()
assert pp_world_size < 2, "Pipeline Parallelism (PP) is not tested yet."
assert ep_world_size < 2, "Expert Parallelism (EP) is not tested yet."
self.mp_world_size = parallel_state.get_model_parallel_group().size()
if self.mp_world_size > 1 and self.__class__ == Checkpointer:
raise NotImplementedError(
"Model Parallelism (MP) is enabled - "
"you should use TensorParallel Checkpointer instead of DDP Checkpointer."
)
# DDP rank (with context parallelism considered)
self.rank_dp_w_cp = parallel_state.get_data_parallel_rank(with_context_parallel=True)
# Context parallelism rank
self.cp_rank = parallel_state.get_context_parallel_rank()
# Model parallelism rank (including Tensor+Pipeline+Expert Parallelisms)
self.mp_rank = parallel_state.get_model_parallel_group().rank()
# self.mp_rank = parallel_state.get_model_parallel_group(with_expert_parallel=ep_world_size > 1).rank()
if self.broadcast_via_filesystem:
log.info("Broadcasting checkpoint data via the local filesystem.")
if not self.strict_resume:
log.warning("Strict resume mode is off. Some model parameters may not be loaded.")
# collect ranks of all model parallel groups
all_ranks = [None for _ in range(distributed.get_world_size())]
torch.distributed.all_gather_object(
all_ranks, get_process_group_ranks(parallel_state.get_model_parallel_group())
)
all_ranks = list(set(tuple(rank) if isinstance(rank, list) else rank for rank in all_ranks))
for ranks in all_ranks:
group = torch.distributed.new_group(list(ranks), backend="gloo")
if distributed.get_rank() in ranks:
self.mp_gloo_pg = group
self.print("Checkpointer Initialized.")
def print(self, message: str):
"""
Print message to the console. Include the parallelism rank information when verbose is set to True.
"""
if self.verbose:
log.info(
f"[Parallelism Rank: DP-{self.rank_dp_w_cp}, TP-{self.mp_rank}, CP-{self.cp_rank}]: {message}",
rank0_only=False,
)
else:
log.info(message, rank0_only=True)
def add_type_postfix_to_checkpoint_path(self, key: str, checkpoint_path: str, model: Model) -> str:
del model
assert key in self.KEYS_TO_SAVE
post_fix = self.KEYS_TO_POSTFIX[key]
if post_fix:
_ckpt_path = checkpoint_path.replace(".pt", f"_{post_fix}.pt")
else:
_ckpt_path = checkpoint_path
return _ckpt_path
def save(
self,
model: Model,
optimizer: torch.optim.Optimizer,
scheduler: torch.optim.lr_scheduler.LRScheduler,
grad_scaler: torch.amp.GradScaler,
iteration: int,
**ignore_kwargs,
) -> None:
"""Save network weights, optimizer parameters, scheduler parameters to a checkpoint.
Args:
model (Model): The PyTorch model.
optimizer (torch.optim.Optimizer): The model optimizer.
scheduler (torch.optim.lr_scheduler.LRScheduler): The optimization scheduler.
grad_scaler (torch.amp.GradScaler): The gradient scaler (for mixed precision training).
iteration (int): Current iteration number.
"""
self.callbacks.on_save_checkpoint_start(model, iteration)
checkpoint_file = self.format_checkpoint_filename(model, iteration)
state_dict = self.generate_save_state_dict(model, optimizer, scheduler, grad_scaler, iteration)
state_dict = self._map_state_dict_path_during_save(state_dict, checkpoint_file, model)
if state_dict:
# Wait for previous saver thread to end.
if self.save_thread:
self.save_thread.join()
# Run the checkpoint saver in a separate thread.
self.save_thread = threading.Thread(
target=self._save_worker,
daemon=False,
args=(state_dict, checkpoint_file, distributed.get_rank()),
)
self.save_thread.start()
# Note: Checkpoints are saved on a separate thread and this callback is not accurate.
# Please check logs from on_save_checkpoint_success() for better accuracy
self.callbacks.on_save_checkpoint_end(model=None, iteration=iteration)
def _map_state_dict_path_during_save(self, state_dict, checkpoint_file, model) -> dict[str, StateDictItemPath]:
new_dict = {}
for key, _state_dict in state_dict.items():
_ckpt_path = self.add_type_postfix_to_checkpoint_path(key, checkpoint_file, model)
checkpoint_path = os.path.join(self.save_dirname, _ckpt_path)
new_dict[key] = StateDictItemPath(_state_dict, checkpoint_path)
return new_dict
@misc.timer("checkpoint saving")
def _save_worker(self, state_dict: dict[str, StateDictItemPath], checkpoint_file: str, rank: int = 0) -> None:
"""Worker to save checkpoint to disk, spawned with a child thread (in parallel with the training).
Args:
state_dict (dict[str, StateDictItemPath]): The state dict of the model/optimizer/scheduler.
checkpoint_file (str): The file name of the model checkpoint.
rank (int): GPU device (default: 0).
"""
try:
for key, item in state_dict.items():
self.print(f"Saving {key} to {item.save_path}")
try:
easy_io.dump(
item.state_dict,
item.save_path,
fast_backend=True, # optional for fast backend, cpu heavy
)
self.print(f"Saved {key} to {item.save_path}")
except Exception as e:
self.print(f"Failed to save {key} to {item.save_path}: {str(e)}")
raise # Re-raise the exception after logging
# Synchronize only rank 0 of each model parallel group
if self.mp_world_size > 1:
torch.distributed.barrier(group=self.mp_gloo_pg)
# Only rank 0 of MP group and rank 0 of DP with CP updates latest_checkpoint.txt
if self.mp_rank == 0 and self.rank_dp_w_cp == 0:
self._write_latest_checkpoint_file(checkpoint_file)
if distributed.get_rank() == 0: # only rank 0 saves trained_data_record
if "trained_data_record" in state_dict["model"].state_dict:
self._write_trained_data_record(
checkpoint_file, state_dict["model"].state_dict["trained_data_record"]
)
iteration = int(checkpoint_file.replace("iter_", "").replace(".pt", ""))
self.callbacks.on_save_checkpoint_success(iteration=iteration)
except Exception as e: # noqa: BLE001
log.exception(f"Checkpoint failed to upload: {e}", rank0_only=not self.verbose)
def format_checkpoint_filename(self, model: Model, iteration: int) -> str:
"""Generate the checkpoint file name.
Args:
iteration (int): The current iteration number.
Returns:
checkpoint_file (str): The checkpoint file name.
"""
del self, model
return f"iter_{iteration:09}.pt"
@misc.timer("generate saving state dict")
def generate_save_state_dict(
self,
model: Model,
optimizer: torch.optim.Optimizer,
scheduler: torch.optim.lr_scheduler.LRScheduler,
grad_scaler: torch.amp.GradScaler,
iteration: int,
) -> Optional[Dict[str, Any]]:
state_dict = {}
if self.rank_dp_w_cp == 0:
trainer_state = dict(
grad_scaler=grad_scaler.state_dict(),
iteration=iteration,
)
model_state = model.state_dict()
optim_state = optimizer.state_dict()
scheduler_state = scheduler.state_dict()
self.callbacks.on_save_checkpoint(model, state_dict=trainer_state)
trainer_state, model_state, optim_state, scheduler_state = misc.to(
[trainer_state, model_state, optim_state, scheduler_state], device="cpu"
)
state_dict = {
"model": model_state,
"optim": optim_state,
"scheduler": scheduler_state,
}
if distributed.get_rank() == 0: # only rank 0 saves trainer state
state_dict["trainer"] = trainer_state
return state_dict
return state_dict
def load_broadcast_state_dict(self, checkpoint_path: str, model: Model, resume_keys: Set) -> dict[str, Any]:
"""
Load state_dict and broadcast.
The main steps are:
1. Download TP-rank-specific checkpoints for every GPU of DDP-rank 0 and CP-rank 0.
2. Each rank loads its corresponding checkpoint from the local cache or receives it via broadcast.
This approach ensures that each MP rank loads its specific part of the model, which is
crucial for Model Parallelism where different parts of the model are distributed across
multiple GPUs.
When using Model Parallelism (e.g., Tensor Parallelism), the `broadcast_via_filesystem` option can
be set to True. This allows each rank to load its specific checkpoint from the local filesystem
instead of receiving it via network broadcast, which could be more efficient in some cases.
For standard DDP without TP, `broadcast_via_filesystem` should remain False (default).
Args:
checkpoint_path (str): The base path of the checkpoint.
model (Model): The model being loaded.
resume_keys (Set): Set of keys to resume from the checkpoint.
Returns:
dict[str, Any]: A dictionary containing the loaded state for each resumed key.
"""
state_dict = {}
sorted_resume_keys = sorted(resume_keys)
# Step 1: Download TP-rank-specific checkpoints for every GPU of DDP-rank 0 and CP-rank 0.
if self.rank_dp_w_cp == 0:
for key in sorted_resume_keys:
_ckpt_path = self.add_type_postfix_to_checkpoint_path(key, checkpoint_path, model)
local_cache_path = os.path.join(self.load_dirname, os.path.basename(_ckpt_path))
if os.path.exists(local_cache_path):
# If the local checkpoint exists, we can directly load it
self.print(f"Checkpoint is already in local cache: {local_cache_path}. Loading...")
_state_dict = easy_io.load(local_cache_path, fast_backend=True)
else:
self.print(f"Downloading checkpoint from: {_ckpt_path}")
_state_dict = easy_io.load(_ckpt_path, fast_backend=True)
if self.broadcast_via_filesystem:
# Save the checkpoint to the local filesystem
easy_io.dump(_state_dict, local_cache_path, fast_backend=True)
state_dict[key] = _state_dict
# Ensure all ranks wait for the download to complete
distributed.barrier()
# Step 2: Broadcast checkpoint data
log.info(
"Start broadcasting checkpoint from the source rank to all other ranks in the same DDP group.",
rank0_only=True,
)
for key in sorted_resume_keys:
if self.broadcast_via_filesystem:
# Load the checkpoint from the local filesystem for other ranks
if self.rank_dp_w_cp != 0:
_ckpt_path = self.add_type_postfix_to_checkpoint_path(key, checkpoint_path, model)
local_cache_path = os.path.join(self.load_dirname, os.path.basename(_ckpt_path))
self.print(f"Loading checkpoint from: {local_cache_path}")
state_dict[key] = easy_io.load(local_cache_path, fast_backend=True)
else:
# Broadcast the checkpoint to all GPUs of the current DDP rank
group: ProcessGroup = parallel_state.get_data_parallel_group(with_context_parallel=True)
min_rank = min(get_process_group_ranks(group))
_state_dict = broadcast_object(
state_dict[key] if self.rank_dp_w_cp == 0 else None,
min_rank,
group=group,
device=torch.device(torch.cuda.current_device()),
)
if self.rank_dp_w_cp == 0:
self.print(f'Broadcasted checkpoint["{key}"] to all other ranks in the same DDP group.')
else:
state_dict[key] = _state_dict
self.print(f'Received checkpoint["{key}"] from source rank {min_rank}.')
return state_dict
def keys_to_resume_during_load(self) -> Tuple[Set, Union[str, None]]:
latest_checkpoint_file = self._read_latest_checkpoint_file()
resume_keys = []
if latest_checkpoint_file is not None:
# 1. Resume training from latest_checkpoint.txt under the same name.
checkpoint_path = os.path.join(self.load_dirname, latest_checkpoint_file)
resume_keys.extend(self.KEYS_TO_SAVE)
else:
if self.load_path:
# 2. Load the module weights specified by config_checkpoint.path.
checkpoint_path = self.load_path
if self.load_training_state:
resume_keys.extend(self.KEYS_TO_SAVE)
else:
resume_keys.append("model")
if self.only_load_scheduler_state:
resume_keys.append("scheduler")
else:
checkpoint_path = None
if len(self.keys_not_to_resume) > 0:
for key in self.keys_not_to_resume:
assert key in self.KEYS_TO_SAVE, f"Invalid key to resume: {key} not in {self.KEYS_TO_SAVE}"
resume_keys = [key for key in resume_keys if key not in self.keys_not_to_resume]
return set(resume_keys), checkpoint_path
@misc.timer("checkpoint loading")
def load(
self,
model: Model,
optimizer: torch.optim.Optimizer | None = None,
scheduler: torch.optim.lr_scheduler.LRScheduler | None = None,
grad_scaler: torch.amp.GradScaler | None = None,
) -> int:
"""Load network weights and optimizer states from a checkpoint in a single process.
The priority of the checkpoint loading logic is:
1. Attempt to resume training if possible by looking for latest_checkpoint.txt under the same name.
2. If no latest checkpoint were found, it loads the model weights specified by config_checkpoint.path.
- This is typically used for inference mode.
- If config_checkpoint.load_optimizer_state is True, then also load the optimizer and scheduler states.
3. If none of the above, randomly initialize the model parameters and train from scratch.
Args:
model (Model): The PyTorch model.
optimizer (torch.optim.Optimizer | None): The model optimizer (default: None).
scheduler (torch.optim.lr_scheduler.LRScheduler | None): The optimization scheduler (default: None).
grad_scaler (torch.amp.GradScaler | None): The gradient scaler (for mixed precision training).
Returns:
iteration (int): the iteration number to start/resume from.
"""
self.callbacks.on_load_checkpoint_start(model)
resume_keys, checkpoint_path = self.keys_to_resume_during_load()
iteration = 0
# Load checkpoint.
if checkpoint_path is not None:
self._check_checkpoint_exists(checkpoint_path)
state_dict = self.load_broadcast_state_dict(checkpoint_path, model, set(resume_keys))
if "trainer" in state_dict:
trainer_state = state_dict["trainer"]
log.critical(state_dict.keys(), rank0_only=False)
log.critical(trainer_state, rank0_only=False)
log.info("- Loading the gradient scaler...")
grad_scaler.load_state_dict(trainer_state["grad_scaler"])
self.callbacks.on_load_checkpoint(model, state_dict=trainer_state)
iteration = trainer_state["iteration"]
if "optim" in state_dict:
assert optimizer
optimizer_state = state_dict["optim"]
log.info("- Loading the optimizer...")
optimizer.load_state_dict(optimizer_state)
if "scheduler" in state_dict:
assert scheduler
scheduler_state = state_dict["scheduler"]
log.info("- Loading the scheduler...")
scheduler.load_state_dict(scheduler_state)
scheduler.last_epoch = iteration
if "model" in state_dict:
model_state = state_dict["model"]
log.info("- Loading the model...")
# model.load_state_dict(model_state)
if self.strict_resume:
log.info("\t Strict resume mode is on.")
else:
log.info("\t Strict resume mode is off.")
model_load_info = model.load_state_dict(model_state, strict=self.strict_resume)
log.info(f"\t {model_load_info}")
self.print(f"Loaded checkpoint from {checkpoint_path} in iteration {iteration}")
else:
log.info("Training from scratch.")
torch.cuda.empty_cache()
self.callbacks.on_load_checkpoint_end(model)
return iteration
def _write_trained_data_record(self, checkpoint_file: str, trained_data_record: dict[str, int]) -> None:
"""Write json file to save number of seen samples and number of iterations.
Args:
checkpoint_file (str): iteration number for the saved checkpoint
trained_data_record (dict[str, int]): example {"image": 0, "video": 0, "iteration": 0}.
"""
# filename: iter_xxxxxxxxx_trained_data_record.json
checkpoint_path = os.path.join(
self.save_dirname, f"{checkpoint_file.replace('.pt', '')}_trained_data_record.json"
)
easy_io.dump(trained_data_record, checkpoint_path)
|