Spaces:
Build error
Build error
File size: 8,878 Bytes
b6af722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, List, Optional
import attrs
import torch
from cosmos_predict1.diffusion.conditioner import BaseConditionEntry, TextAttr, VideoConditioner, VideoExtendConditioner
from cosmos_predict1.utils.lazy_config import LazyCall as L
from cosmos_predict1.utils.lazy_config import LazyDict
@attrs.define(slots=False)
class TextConfig:
obj: LazyDict = L(TextAttr)() # No arguments
dropout_rate: float = 0.2
input_keys: List[str] = attrs.field(factory=lambda: ["t5_text_embeddings", "t5_text_mask"])
class BooleanFlag(BaseConditionEntry):
def __init__(self, output_key: Optional[str] = None):
super().__init__()
self.output_key = output_key
def forward(self, *args, **kwargs) -> Dict[str, torch.Tensor]:
del args, kwargs
key = self.output_key if self.output_key else self.input_key
return {key: self.flag}
def random_dropout_input(
self, in_tensor: torch.Tensor, dropout_rate: Optional[float] = None, key: Optional[str] = None
) -> torch.Tensor:
del key
dropout_rate = dropout_rate if dropout_rate is not None else self.dropout_rate
self.flag = torch.bernoulli((1.0 - dropout_rate) * torch.ones(1)).bool().to(device=in_tensor.device)
return in_tensor
class ReMapkey(BaseConditionEntry):
def __init__(self, output_key: Optional[str] = None, dtype: Optional[str] = None):
super().__init__()
self.output_key = output_key
self.dtype = {
None: None,
"float": torch.float32,
"bfloat16": torch.bfloat16,
"half": torch.float16,
"float16": torch.float16,
"int": torch.int32,
"long": torch.int64,
}[dtype]
def forward(self, element: torch.Tensor) -> Dict[str, torch.Tensor]:
key = self.output_key if self.output_key else self.input_key
if isinstance(element, torch.Tensor):
element = element.to(dtype=self.dtype)
return {key: element}
class FrameRepeatAttr(BaseConditionEntry):
def __init__(self):
super().__init__()
def forward(self, frame_repeat: torch.Tensor) -> Dict[str, torch.Tensor]:
return {
"frame_repeat": frame_repeat / 10.0,
}
@attrs.define(slots=False)
class FPSConfig:
"""
Remap the key from the input dictionary to the output dictionary. For `fps`.
"""
obj: LazyDict = L(ReMapkey)(output_key="fps", dtype=None)
dropout_rate: float = 0.0
input_key: str = "fps"
@attrs.define(slots=False)
class PaddingMaskConfig:
"""
Remap the key from the input dictionary to the output dictionary. For `padding_mask`.
"""
obj: LazyDict = L(ReMapkey)(output_key="padding_mask", dtype=None)
dropout_rate: float = 0.0
input_key: str = "padding_mask"
@attrs.define(slots=False)
class ImageSizeConfig:
"""
Remap the key from the input dictionary to the output dictionary. For `image_size`.
"""
obj: LazyDict = L(ReMapkey)(output_key="image_size", dtype=None)
dropout_rate: float = 0.0
input_key: str = "image_size"
@attrs.define(slots=False)
class NumFramesConfig:
"""
Remap the key from the input dictionary to the output dictionary. For `num_frames`.
"""
obj: LazyDict = L(ReMapkey)(output_key="num_frames", dtype=None)
dropout_rate: float = 0.0
input_key: str = "num_frames"
@attrs.define(slots=False)
class FrameRepeatConfig:
"""
Remap and process key from the input dictionary to the output dictionary. For `frame_repeat`.
"""
obj: LazyDict = L(FrameRepeatAttr)()
dropout_rate: float = 0.0
input_key: str = "frame_repeat"
@attrs.define(slots=False)
class VideoCondBoolConfig:
obj: LazyDict = L(BooleanFlag)(output_key="video_cond_bool")
dropout_rate: float = 0.2
input_key: str = "fps" # This is a placeholder, we never use this value
# Config below are for long video generation only
compute_loss_for_condition_region: bool = False # Compute loss for condition region
# How to sample condition region during training. "first_random_n" set the first n frames to be condition region, n is random, "random" set the condition region to be random,
condition_location: str = "first_random_n"
random_conditon_rate: float = 0.5 # The rate to sample the condition region randomly
first_random_n_num_condition_t_max: int = 4 # The maximum number of frames to sample as condition region, used when condition_location is "first_random_n"
first_random_n_num_condition_t_min: int = 0 # The minimum number of frames to sample as condition region, used when condition_location is "first_random_n"
# How to dropout value of the conditional input frames
cfg_unconditional_type: str = "zero_condition_region_condition_mask" # Unconditional type. "zero_condition_region_condition_mask" set the input to zero for condition region, "noise_x_condition_region" set the input to x_t, same as the base model
# How to corrupt the condition region
apply_corruption_to_condition_region: str = "noise_with_sigma" # Apply corruption to condition region, option: "gaussian_blur", "noise_with_sigma", "clean" (inference), "noise_with_sigma_fixed" (inference)
# Inference only option: list of sigma value for the corruption at different chunk id, used when apply_corruption_to_condition_region is "noise_with_sigma" or "noise_with_sigma_fixed"
apply_corruption_to_condition_region_sigma_value: list[float] = [0.001, 0.2] + [
0.5
] * 10 # Sigma value for the corruption, used when apply_corruption_to_condition_region is "noise_with_sigma_fixed"
# Add augment_sigma condition to the network
condition_on_augment_sigma: bool = False
# The following arguments is to match with previous implementation where we use train sde to sample augment sigma (with adjust video noise turn on)
augment_sigma_sample_p_mean: float = 0.0 # Mean of the augment sigma
augment_sigma_sample_p_std: float = 1.0 # Std of the augment sigma
augment_sigma_sample_multiplier: float = 4.0 # Multipler of augment sigma
# Add pose condition to the network
add_pose_condition: bool = False
# Sample PPP... from IPPP... sequence
sample_tokens_start_from_p_or_i: bool = False
# Normalize the input condition latent
normalize_condition_latent: bool = False
@attrs.define(slots=False)
class LatentConditionConfig:
"""
Remap the key from the input dictionary to the output dictionary. For `latent condition`.
"""
obj: LazyDict = L(ReMapkey)(output_key="latent_condition", dtype=None)
dropout_rate: float = 0.0
input_key: str = "latent_condition"
@attrs.define(slots=False)
class LatentConditionSigmaConfig:
"""
Remap the key from the input dictionary to the output dictionary. For `latent condition`.
"""
obj: LazyDict = L(ReMapkey)(output_key="latent_condition_sigma", dtype=None)
dropout_rate: float = 0.0
input_key: str = "latent_condition_sigma"
BaseVideoConditionerConfig: LazyDict = L(VideoConditioner)(
text=TextConfig(),
)
VideoConditionerFpsSizePaddingConfig: LazyDict = L(VideoConditioner)(
text=TextConfig(),
fps=FPSConfig(),
num_frames=NumFramesConfig(),
image_size=ImageSizeConfig(),
padding_mask=PaddingMaskConfig(),
)
VideoExtendConditionerConfig: LazyDict = L(VideoExtendConditioner)(
text=TextConfig(),
fps=FPSConfig(),
num_frames=NumFramesConfig(),
image_size=ImageSizeConfig(),
padding_mask=PaddingMaskConfig(),
video_cond_bool=VideoCondBoolConfig(),
)
VideoConditionerFpsSizePaddingFrameRepeatConfig: LazyDict = L(VideoConditioner)(
text=TextConfig(),
fps=FPSConfig(),
num_frames=NumFramesConfig(),
image_size=ImageSizeConfig(),
padding_mask=PaddingMaskConfig(),
frame_repeat=FrameRepeatConfig(),
)
VideoExtendConditionerFrameRepeatConfig: LazyDict = L(VideoExtendConditioner)(
text=TextConfig(),
fps=FPSConfig(),
num_frames=NumFramesConfig(),
image_size=ImageSizeConfig(),
padding_mask=PaddingMaskConfig(),
video_cond_bool=VideoCondBoolConfig(),
frame_repeat=FrameRepeatConfig(),
)
|