File size: 15,605 Bytes
b6af722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
from einops import rearrange

from cosmos_predict1.diffusion.inference.forward_warp_utils_pytorch import (
    forward_warp,
    reliable_depth_mask_range_batch,
    unproject_points,
)
from cosmos_predict1.diffusion.inference.camera_utils import align_depth

class Cache3D_Base:
    def __init__(
        self,
        input_image,
        input_depth,
        input_w2c,
        input_intrinsics,
        input_mask=None,
        input_format=None,
        input_points=None,
        weight_dtype=torch.float32,
        is_depth=True,
        device="cuda",
        filter_points_threshold=1.0,
        foreground_masking=False,
    ):
        """
        input_image: Tensor with varying dimensions.
        input_format: List of dimension labels corresponding to input_image's dimensions.
                      E.g., ['B', 'C', 'H', 'W'], ['B', 'F', 'C', 'H', 'W'], etc.
        """
        self.weight_dtype = weight_dtype
        self.is_depth = is_depth
        self.device = device
        self.filter_points_threshold = filter_points_threshold
        self.foreground_masking = foreground_masking
        if input_format is None:
            assert input_image.dim() == 4
            input_format = ["B", "C", "H", "W"]

        # Map dimension names to their indices in input_image
        format_to_indices = {dim: idx for idx, dim in enumerate(input_format)}
        input_shape = input_image.shape
        if input_mask is not None:
            input_image = torch.cat([input_image, input_mask], dim=format_to_indices.get("C"))

        # B (batch size), F (frame count), N dimensions: no aggregation during warping.
        # Only broadcasting over F to match the target w2c.
        # V: aggregate via concatenation or duster
        B = input_shape[format_to_indices.get("B", 0)] if "B" in format_to_indices else 1  # batch
        F = input_shape[format_to_indices.get("F", 0)] if "F" in format_to_indices else 1  # frame
        N = input_shape[format_to_indices.get("N", 0)] if "N" in format_to_indices else 1  # buffer
        V = input_shape[format_to_indices.get("V", 0)] if "V" in format_to_indices else 1  # view
        H = input_shape[format_to_indices.get("H", 0)] if "H" in format_to_indices else None
        W = input_shape[format_to_indices.get("W", 0)] if "W" in format_to_indices else None

        # Desired dimension order
        desired_dims = ["B", "F", "N", "V", "C", "H", "W"]

        # Build permute order based on input_format
        permute_order = []
        for dim in desired_dims:
            idx = format_to_indices.get(dim)
            if idx is not None:
                permute_order.append(idx)
            else:
                # Placeholder for dimensions to be added later
                permute_order.append(None)

        # Remove None values for permute operation
        permute_indices = [idx for idx in permute_order if idx is not None]
        input_image = input_image.permute(*permute_indices)

        # Insert dimensions of size 1 where necessary
        for i, idx in enumerate(permute_order):
            if idx is None:
                input_image = input_image.unsqueeze(i)

        # Now input_image has the shape B x F x N x V x C x H x W
        if input_mask is not None:
            self.input_image, self.input_mask = input_image[:, :, :, :, :3], input_image[:, :, :, :, 3:]
            self.input_mask = self.input_mask.to("cpu")
        else:
            self.input_mask = None
            self.input_image = input_image
        self.input_image = self.input_image.to(weight_dtype).to("cpu")

        if input_points is not None:
            self.input_points = input_points.reshape(B, F, N, V, H, W, 3).to("cpu")
            self.input_depth = None
        else:
            input_depth = torch.nan_to_num(input_depth, nan=100)
            input_depth = torch.clamp(input_depth, min=0, max=100)
            if weight_dtype == torch.float16:
                input_depth = torch.clamp(input_depth, max=70)
            self.input_points = (
                self._compute_input_points(
                    input_depth.reshape(-1, 1, H, W),
                    input_w2c.reshape(-1, 4, 4),
                    input_intrinsics.reshape(-1, 3, 3),
                )
                .to(weight_dtype)
                .reshape(B, F, N, V, H, W, 3)
                .to("cpu")
            )
            self.input_depth = input_depth

        if self.filter_points_threshold < 1.0 and input_depth is not None:
            input_depth = input_depth.reshape(-1, 1, H, W)
            depth_mask = reliable_depth_mask_range_batch(input_depth, ratio_thresh=self.filter_points_threshold).reshape(B, F, N, V, 1, H, W)
            if self.input_mask is None:
                self.input_mask = depth_mask.to("cpu")
            else:
                self.input_mask = self.input_mask * depth_mask.to(self.input_mask.device)
        self.boundary_mask = None
        if foreground_masking:
            input_depth = input_depth.reshape(-1, 1, H, W)
            depth_mask = reliable_depth_mask_range_batch(input_depth)
            self.boundary_mask = (~depth_mask).reshape(B, F, N, V, 1, H, W).to("cpu")

    def _compute_input_points(self, input_depth, input_w2c, input_intrinsics):
        input_points = unproject_points(
            input_depth,
            input_w2c,
            input_intrinsics,
            is_depth=self.is_depth,
        )
        return input_points

    def update_cache(self):
        raise NotImplementedError

    def input_frame_count(self) -> int:
        return self.input_image.shape[1]

    def render_cache(self, target_w2cs, target_intrinsics, render_depth=False, start_frame_idx=0):
        bs, F_target, _, _ = target_w2cs.shape

        B, F, N, V, C, H, W = self.input_image.shape
        assert bs == B

        target_w2cs = target_w2cs.reshape(B, F_target, 1, 4, 4).expand(B, F_target, N, 4, 4).reshape(-1, 4, 4)
        target_intrinsics = (
            target_intrinsics.reshape(B, F_target, 1, 3, 3).expand(B, F_target, N, 3, 3).reshape(-1, 3, 3)
        )

        first_images = rearrange(self.input_image[:, start_frame_idx:start_frame_idx+F_target].expand(B, F_target, N, V, C, H, W), "B F N V C H W-> (B F N) V C H W").to(self.device)
        first_points = rearrange(
            self.input_points[:, start_frame_idx:start_frame_idx+F_target].expand(B, F_target, N, V, H, W, 3), "B F N V H W C-> (B F N) V H W C"
        ).to(self.device)
        first_masks = rearrange(
            self.input_mask[:, start_frame_idx:start_frame_idx+F_target].expand(B, F_target, N, V, 1, H, W), "B F N V C H W-> (B F N) V C H W"
        ).to(self.device) if self.input_mask is not None else None
        boundary_masks = rearrange(
            self.boundary_mask.expand(B, F_target, N, V, 1, H, W), "B F N V C H W-> (B F N) V C H W"
        ) if self.boundary_mask is not None else None

        if first_images.shape[1] == 1:
            warp_chunk_size = 2
            rendered_warp_images = []
            rendered_warp_masks = []
            rendered_warp_depth = []
            rendered_warped_flows = []

            first_images = first_images.squeeze(1)
            first_points = first_points.squeeze(1)
            first_masks = first_masks.squeeze(1) if first_masks is not None else None
            for i in range(0, first_images.shape[0], warp_chunk_size):
                (
                    rendered_warp_images_chunk,
                    rendered_warp_masks_chunk,
                    rendered_warp_depth_chunk,
                    rendered_warped_flows_chunk,
                ) = forward_warp(
                    first_images[i : i + warp_chunk_size],
                    mask1=first_masks[i : i + warp_chunk_size] if first_masks is not None else None,
                    depth1=None,
                    transformation1=None,
                    transformation2=target_w2cs[i : i + warp_chunk_size],
                    intrinsic1=target_intrinsics[i : i + warp_chunk_size],
                    intrinsic2=target_intrinsics[i : i + warp_chunk_size],
                    render_depth=render_depth,
                    world_points1=first_points[i : i + warp_chunk_size],
                    foreground_masking=self.foreground_masking,
                    boundary_mask=boundary_masks[i : i + warp_chunk_size, 0, 0] if boundary_masks is not None else None
                )
                rendered_warp_images.append(rendered_warp_images_chunk)
                rendered_warp_masks.append(rendered_warp_masks_chunk)
                rendered_warp_depth.append(rendered_warp_depth_chunk)
                rendered_warped_flows.append(rendered_warped_flows_chunk)
            rendered_warp_images = torch.cat(rendered_warp_images, dim=0)
            rendered_warp_masks = torch.cat(rendered_warp_masks, dim=0)
            if render_depth:
                rendered_warp_depth = torch.cat(rendered_warp_depth, dim=0)
            rendered_warped_flows = torch.cat(rendered_warped_flows, dim=0)

        else:
            raise NotImplementedError

        pixels = rearrange(rendered_warp_images, "(b f n) c h w -> b f n c h w", b=bs, f=F_target, n=N)
        masks = rearrange(rendered_warp_masks, "(b f n) c h w -> b f n c h w", b=bs, f=F_target, n=N)
        if render_depth:
            pixels = rearrange(rendered_warp_depth, "(b f n) h w -> b f n h w", b=bs, f=F_target, n=N)
        return pixels, masks


class Cache3D_Buffer(Cache3D_Base):
    def __init__(self, frame_buffer_max=0, noise_aug_strength=0, generator=None, **kwargs):
        super().__init__(**kwargs)
        self.frame_buffer_max = frame_buffer_max
        self.noise_aug_strength = noise_aug_strength
        self.generator = generator

    def update_cache(self, new_image, new_depth, new_w2c, new_mask=None, new_intrinsics=None, depth_alignment=True, alignment_method="non_rigid"):  # 3D cache
        new_image = new_image.to(self.weight_dtype).to(self.device)
        new_depth = new_depth.to(self.weight_dtype).to(self.device)
        new_w2c = new_w2c.to(self.weight_dtype).to(self.device)
        if new_intrinsics is not None:
            new_intrinsics = new_intrinsics.to(self.weight_dtype).to(self.device)

        new_depth = torch.nan_to_num(new_depth, nan=1e4)
        new_depth = torch.clamp(new_depth, min=0, max=1e4)

        if depth_alignment:
            target_depth, target_mask = self.render_cache(
                new_w2c.unsqueeze(1), new_intrinsics.unsqueeze(1), render_depth=True
            )
            target_depth, target_mask = target_depth[:, :, 0], target_mask[:, :, 0]
            if alignment_method == "rigid":
                new_depth = (
                    align_depth(
                        new_depth.squeeze(),
                        target_depth.squeeze(),
                        target_mask.bool().squeeze(),
                    )
                    .reshape_as(new_depth)
                    .detach()
                )
            elif alignment_method == "non_rigid":
                with torch.enable_grad():
                    new_depth = (
                        align_depth(
                            new_depth.squeeze(),
                            target_depth.squeeze(),
                            target_mask.bool().squeeze(),
                            k=new_intrinsics.squeeze(),
                            c2w=torch.inverse(new_w2c.squeeze()),
                            alignment_method="non_rigid",
                            num_iters=100,
                            lambda_arap=0.1,
                            smoothing_kernel_size=3,
                        )
                        .reshape_as(new_depth)
                        .detach()
                    )
            else:
                raise NotImplementedError
        new_points = unproject_points(new_depth, new_w2c, new_intrinsics, is_depth=self.is_depth).cpu()
        new_image = new_image.cpu()

        if self.filter_points_threshold < 1.0:
            B, F, N, V, C, H, W = self.input_image.shape
            new_depth = new_depth.reshape(-1, 1, H, W)
            depth_mask = reliable_depth_mask_range_batch(new_depth, ratio_thresh=self.filter_points_threshold).reshape(B, 1, H, W)
            if new_mask is None:
                new_mask = depth_mask.to("cpu")
            else:
                new_mask = new_mask * depth_mask.to(new_mask.device)
        if new_mask is not None:
            new_mask = new_mask.cpu()
        if self.frame_buffer_max > 1:  # newest frame first
            if self.input_image.shape[2] < self.frame_buffer_max:
                self.input_image = torch.cat([new_image[:, None, None, None], self.input_image], 2)
                self.input_points = torch.cat([new_points[:, None, None, None], self.input_points], 2)
                if self.input_mask is not None:
                    self.input_mask = torch.cat([new_mask[:, None, None, None], self.input_mask], 2)
            else:
                self.input_image[:, :, 0] = new_image[:, None, None]
                self.input_points[:, :, 0] = new_points[:, None, None]
                if self.input_mask is not None:
                    self.input_mask[:, :, 0] = new_mask[:, None, None]
        else:
            self.input_image = new_image[:, None, None, None]
            self.input_points = new_points[:, None, None, None]


    def render_cache(
        self,
        target_w2cs,
        target_intrinsics,
        render_depth: bool = False,
        start_frame_idx: int = 0,  # For consistency with Cache4D
    ):
        assert start_frame_idx == 0, "start_frame_idx must be 0 for Cache3D_Buffer"

        output_device = target_w2cs.device
        target_w2cs = target_w2cs.to(self.weight_dtype).to(self.device)
        target_intrinsics = target_intrinsics.to(self.weight_dtype).to(self.device)
        pixels, masks = super().render_cache(
            target_w2cs, target_intrinsics, render_depth
        )
        if not render_depth:
            noise = torch.randn(pixels.shape, generator=self.generator, device=pixels.device, dtype=pixels.dtype)
            per_buffer_noise = (
                torch.arange(start=pixels.shape[2] - 1, end=-1, step=-1, device=pixels.device)
                * self.noise_aug_strength
            )
            pixels = pixels + noise * per_buffer_noise.reshape(1, 1, -1, 1, 1, 1)  # B, F, N, C, H, W
        return pixels.to(output_device), masks.to(output_device)


class Cache4D(Cache3D_Base):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)

    def update_cache(self, **kwargs):
        raise NotImplementedError

    def render_cache(self, target_w2cs, target_intrinsics, render_depth=False, start_frame_idx=0):
        rendered_warp_images, rendered_warp_masks = super().render_cache(target_w2cs, target_intrinsics, render_depth, start_frame_idx)
        return rendered_warp_images, rendered_warp_masks