Spaces:
Build error
Build error
File size: 15,605 Bytes
b6af722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from einops import rearrange
from cosmos_predict1.diffusion.inference.forward_warp_utils_pytorch import (
forward_warp,
reliable_depth_mask_range_batch,
unproject_points,
)
from cosmos_predict1.diffusion.inference.camera_utils import align_depth
class Cache3D_Base:
def __init__(
self,
input_image,
input_depth,
input_w2c,
input_intrinsics,
input_mask=None,
input_format=None,
input_points=None,
weight_dtype=torch.float32,
is_depth=True,
device="cuda",
filter_points_threshold=1.0,
foreground_masking=False,
):
"""
input_image: Tensor with varying dimensions.
input_format: List of dimension labels corresponding to input_image's dimensions.
E.g., ['B', 'C', 'H', 'W'], ['B', 'F', 'C', 'H', 'W'], etc.
"""
self.weight_dtype = weight_dtype
self.is_depth = is_depth
self.device = device
self.filter_points_threshold = filter_points_threshold
self.foreground_masking = foreground_masking
if input_format is None:
assert input_image.dim() == 4
input_format = ["B", "C", "H", "W"]
# Map dimension names to their indices in input_image
format_to_indices = {dim: idx for idx, dim in enumerate(input_format)}
input_shape = input_image.shape
if input_mask is not None:
input_image = torch.cat([input_image, input_mask], dim=format_to_indices.get("C"))
# B (batch size), F (frame count), N dimensions: no aggregation during warping.
# Only broadcasting over F to match the target w2c.
# V: aggregate via concatenation or duster
B = input_shape[format_to_indices.get("B", 0)] if "B" in format_to_indices else 1 # batch
F = input_shape[format_to_indices.get("F", 0)] if "F" in format_to_indices else 1 # frame
N = input_shape[format_to_indices.get("N", 0)] if "N" in format_to_indices else 1 # buffer
V = input_shape[format_to_indices.get("V", 0)] if "V" in format_to_indices else 1 # view
H = input_shape[format_to_indices.get("H", 0)] if "H" in format_to_indices else None
W = input_shape[format_to_indices.get("W", 0)] if "W" in format_to_indices else None
# Desired dimension order
desired_dims = ["B", "F", "N", "V", "C", "H", "W"]
# Build permute order based on input_format
permute_order = []
for dim in desired_dims:
idx = format_to_indices.get(dim)
if idx is not None:
permute_order.append(idx)
else:
# Placeholder for dimensions to be added later
permute_order.append(None)
# Remove None values for permute operation
permute_indices = [idx for idx in permute_order if idx is not None]
input_image = input_image.permute(*permute_indices)
# Insert dimensions of size 1 where necessary
for i, idx in enumerate(permute_order):
if idx is None:
input_image = input_image.unsqueeze(i)
# Now input_image has the shape B x F x N x V x C x H x W
if input_mask is not None:
self.input_image, self.input_mask = input_image[:, :, :, :, :3], input_image[:, :, :, :, 3:]
self.input_mask = self.input_mask.to("cpu")
else:
self.input_mask = None
self.input_image = input_image
self.input_image = self.input_image.to(weight_dtype).to("cpu")
if input_points is not None:
self.input_points = input_points.reshape(B, F, N, V, H, W, 3).to("cpu")
self.input_depth = None
else:
input_depth = torch.nan_to_num(input_depth, nan=100)
input_depth = torch.clamp(input_depth, min=0, max=100)
if weight_dtype == torch.float16:
input_depth = torch.clamp(input_depth, max=70)
self.input_points = (
self._compute_input_points(
input_depth.reshape(-1, 1, H, W),
input_w2c.reshape(-1, 4, 4),
input_intrinsics.reshape(-1, 3, 3),
)
.to(weight_dtype)
.reshape(B, F, N, V, H, W, 3)
.to("cpu")
)
self.input_depth = input_depth
if self.filter_points_threshold < 1.0 and input_depth is not None:
input_depth = input_depth.reshape(-1, 1, H, W)
depth_mask = reliable_depth_mask_range_batch(input_depth, ratio_thresh=self.filter_points_threshold).reshape(B, F, N, V, 1, H, W)
if self.input_mask is None:
self.input_mask = depth_mask.to("cpu")
else:
self.input_mask = self.input_mask * depth_mask.to(self.input_mask.device)
self.boundary_mask = None
if foreground_masking:
input_depth = input_depth.reshape(-1, 1, H, W)
depth_mask = reliable_depth_mask_range_batch(input_depth)
self.boundary_mask = (~depth_mask).reshape(B, F, N, V, 1, H, W).to("cpu")
def _compute_input_points(self, input_depth, input_w2c, input_intrinsics):
input_points = unproject_points(
input_depth,
input_w2c,
input_intrinsics,
is_depth=self.is_depth,
)
return input_points
def update_cache(self):
raise NotImplementedError
def input_frame_count(self) -> int:
return self.input_image.shape[1]
def render_cache(self, target_w2cs, target_intrinsics, render_depth=False, start_frame_idx=0):
bs, F_target, _, _ = target_w2cs.shape
B, F, N, V, C, H, W = self.input_image.shape
assert bs == B
target_w2cs = target_w2cs.reshape(B, F_target, 1, 4, 4).expand(B, F_target, N, 4, 4).reshape(-1, 4, 4)
target_intrinsics = (
target_intrinsics.reshape(B, F_target, 1, 3, 3).expand(B, F_target, N, 3, 3).reshape(-1, 3, 3)
)
first_images = rearrange(self.input_image[:, start_frame_idx:start_frame_idx+F_target].expand(B, F_target, N, V, C, H, W), "B F N V C H W-> (B F N) V C H W").to(self.device)
first_points = rearrange(
self.input_points[:, start_frame_idx:start_frame_idx+F_target].expand(B, F_target, N, V, H, W, 3), "B F N V H W C-> (B F N) V H W C"
).to(self.device)
first_masks = rearrange(
self.input_mask[:, start_frame_idx:start_frame_idx+F_target].expand(B, F_target, N, V, 1, H, W), "B F N V C H W-> (B F N) V C H W"
).to(self.device) if self.input_mask is not None else None
boundary_masks = rearrange(
self.boundary_mask.expand(B, F_target, N, V, 1, H, W), "B F N V C H W-> (B F N) V C H W"
) if self.boundary_mask is not None else None
if first_images.shape[1] == 1:
warp_chunk_size = 2
rendered_warp_images = []
rendered_warp_masks = []
rendered_warp_depth = []
rendered_warped_flows = []
first_images = first_images.squeeze(1)
first_points = first_points.squeeze(1)
first_masks = first_masks.squeeze(1) if first_masks is not None else None
for i in range(0, first_images.shape[0], warp_chunk_size):
(
rendered_warp_images_chunk,
rendered_warp_masks_chunk,
rendered_warp_depth_chunk,
rendered_warped_flows_chunk,
) = forward_warp(
first_images[i : i + warp_chunk_size],
mask1=first_masks[i : i + warp_chunk_size] if first_masks is not None else None,
depth1=None,
transformation1=None,
transformation2=target_w2cs[i : i + warp_chunk_size],
intrinsic1=target_intrinsics[i : i + warp_chunk_size],
intrinsic2=target_intrinsics[i : i + warp_chunk_size],
render_depth=render_depth,
world_points1=first_points[i : i + warp_chunk_size],
foreground_masking=self.foreground_masking,
boundary_mask=boundary_masks[i : i + warp_chunk_size, 0, 0] if boundary_masks is not None else None
)
rendered_warp_images.append(rendered_warp_images_chunk)
rendered_warp_masks.append(rendered_warp_masks_chunk)
rendered_warp_depth.append(rendered_warp_depth_chunk)
rendered_warped_flows.append(rendered_warped_flows_chunk)
rendered_warp_images = torch.cat(rendered_warp_images, dim=0)
rendered_warp_masks = torch.cat(rendered_warp_masks, dim=0)
if render_depth:
rendered_warp_depth = torch.cat(rendered_warp_depth, dim=0)
rendered_warped_flows = torch.cat(rendered_warped_flows, dim=0)
else:
raise NotImplementedError
pixels = rearrange(rendered_warp_images, "(b f n) c h w -> b f n c h w", b=bs, f=F_target, n=N)
masks = rearrange(rendered_warp_masks, "(b f n) c h w -> b f n c h w", b=bs, f=F_target, n=N)
if render_depth:
pixels = rearrange(rendered_warp_depth, "(b f n) h w -> b f n h w", b=bs, f=F_target, n=N)
return pixels, masks
class Cache3D_Buffer(Cache3D_Base):
def __init__(self, frame_buffer_max=0, noise_aug_strength=0, generator=None, **kwargs):
super().__init__(**kwargs)
self.frame_buffer_max = frame_buffer_max
self.noise_aug_strength = noise_aug_strength
self.generator = generator
def update_cache(self, new_image, new_depth, new_w2c, new_mask=None, new_intrinsics=None, depth_alignment=True, alignment_method="non_rigid"): # 3D cache
new_image = new_image.to(self.weight_dtype).to(self.device)
new_depth = new_depth.to(self.weight_dtype).to(self.device)
new_w2c = new_w2c.to(self.weight_dtype).to(self.device)
if new_intrinsics is not None:
new_intrinsics = new_intrinsics.to(self.weight_dtype).to(self.device)
new_depth = torch.nan_to_num(new_depth, nan=1e4)
new_depth = torch.clamp(new_depth, min=0, max=1e4)
if depth_alignment:
target_depth, target_mask = self.render_cache(
new_w2c.unsqueeze(1), new_intrinsics.unsqueeze(1), render_depth=True
)
target_depth, target_mask = target_depth[:, :, 0], target_mask[:, :, 0]
if alignment_method == "rigid":
new_depth = (
align_depth(
new_depth.squeeze(),
target_depth.squeeze(),
target_mask.bool().squeeze(),
)
.reshape_as(new_depth)
.detach()
)
elif alignment_method == "non_rigid":
with torch.enable_grad():
new_depth = (
align_depth(
new_depth.squeeze(),
target_depth.squeeze(),
target_mask.bool().squeeze(),
k=new_intrinsics.squeeze(),
c2w=torch.inverse(new_w2c.squeeze()),
alignment_method="non_rigid",
num_iters=100,
lambda_arap=0.1,
smoothing_kernel_size=3,
)
.reshape_as(new_depth)
.detach()
)
else:
raise NotImplementedError
new_points = unproject_points(new_depth, new_w2c, new_intrinsics, is_depth=self.is_depth).cpu()
new_image = new_image.cpu()
if self.filter_points_threshold < 1.0:
B, F, N, V, C, H, W = self.input_image.shape
new_depth = new_depth.reshape(-1, 1, H, W)
depth_mask = reliable_depth_mask_range_batch(new_depth, ratio_thresh=self.filter_points_threshold).reshape(B, 1, H, W)
if new_mask is None:
new_mask = depth_mask.to("cpu")
else:
new_mask = new_mask * depth_mask.to(new_mask.device)
if new_mask is not None:
new_mask = new_mask.cpu()
if self.frame_buffer_max > 1: # newest frame first
if self.input_image.shape[2] < self.frame_buffer_max:
self.input_image = torch.cat([new_image[:, None, None, None], self.input_image], 2)
self.input_points = torch.cat([new_points[:, None, None, None], self.input_points], 2)
if self.input_mask is not None:
self.input_mask = torch.cat([new_mask[:, None, None, None], self.input_mask], 2)
else:
self.input_image[:, :, 0] = new_image[:, None, None]
self.input_points[:, :, 0] = new_points[:, None, None]
if self.input_mask is not None:
self.input_mask[:, :, 0] = new_mask[:, None, None]
else:
self.input_image = new_image[:, None, None, None]
self.input_points = new_points[:, None, None, None]
def render_cache(
self,
target_w2cs,
target_intrinsics,
render_depth: bool = False,
start_frame_idx: int = 0, # For consistency with Cache4D
):
assert start_frame_idx == 0, "start_frame_idx must be 0 for Cache3D_Buffer"
output_device = target_w2cs.device
target_w2cs = target_w2cs.to(self.weight_dtype).to(self.device)
target_intrinsics = target_intrinsics.to(self.weight_dtype).to(self.device)
pixels, masks = super().render_cache(
target_w2cs, target_intrinsics, render_depth
)
if not render_depth:
noise = torch.randn(pixels.shape, generator=self.generator, device=pixels.device, dtype=pixels.dtype)
per_buffer_noise = (
torch.arange(start=pixels.shape[2] - 1, end=-1, step=-1, device=pixels.device)
* self.noise_aug_strength
)
pixels = pixels + noise * per_buffer_noise.reshape(1, 1, -1, 1, 1, 1) # B, F, N, C, H, W
return pixels.to(output_device), masks.to(output_device)
class Cache4D(Cache3D_Base):
def __init__(self, **kwargs):
super().__init__(**kwargs)
def update_cache(self, **kwargs):
raise NotImplementedError
def render_cache(self, target_w2cs, target_intrinsics, render_depth=False, start_frame_idx=0):
rendered_warp_images, rendered_warp_masks = super().render_cache(target_w2cs, target_intrinsics, render_depth, start_frame_idx)
return rendered_warp_images, rendered_warp_masks
|