File size: 13,977 Bytes
b6af722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
import math
import torch.nn.functional as F
from .forward_warp_utils_pytorch import unproject_points

def apply_transformation(Bx4x4, another_matrix):
    B = Bx4x4.shape[0]
    if another_matrix.dim() == 2:
        another_matrix = another_matrix.unsqueeze(0).expand(B, -1, -1)  # Make another_matrix compatible with batch size
    transformed_matrix = torch.bmm(Bx4x4, another_matrix)  # Shape: (B, 4, 4)

    return transformed_matrix


def look_at_matrix(camera_pos, target, invert_pos=True):
    """Creates a 4x4 look-at matrix, keeping the camera pointing towards a target."""
    forward = (target - camera_pos).float()
    forward = forward / torch.norm(forward)

    up = torch.tensor([0.0, 1.0, 0.0], device=camera_pos.device)  # assuming Y-up coordinate system
    right = torch.cross(up, forward)
    right = right / torch.norm(right)
    up = torch.cross(forward, right)

    look_at = torch.eye(4, device=camera_pos.device)
    look_at[0, :3] = right
    look_at[1, :3] = up
    look_at[2, :3] = forward
    look_at[:3, 3] = (-camera_pos) if invert_pos else camera_pos

    return look_at

def create_horizontal_trajectory(
    world_to_camera_matrix, center_depth, positive=True, n_steps=13, distance=0.1, device="cuda", axis="x", camera_rotation="center_facing"
):
    look_at = torch.tensor([0.0, 0.0, center_depth]).to(device)
    # Spiral motion key points
    trajectory = []
    translation_positions = []
    initial_camera_pos = torch.tensor([0, 0, 0], device=device)

    for i in range(n_steps):
        if axis == "x": # pos - right
            x = i * distance * center_depth / n_steps * (1 if positive else -1)
            y = 0
            z = 0
        elif axis == "y": # pos - down
            x = 0
            y = i * distance * center_depth / n_steps * (1 if positive else -1)
            z = 0
        elif axis == "z": # pos - in
            x = 0
            y = 0
            z = i * distance * center_depth / n_steps * (1 if positive else -1)
        else:
            raise ValueError("Axis should be x, y or z")

        translation_positions.append(torch.tensor([x, y, z], device=device))

    for pos in translation_positions:
        camera_pos = initial_camera_pos + pos
        if camera_rotation == "trajectory_aligned":
            _look_at = look_at + pos * 2
        elif camera_rotation == "center_facing":
            _look_at = look_at
        elif camera_rotation == "no_rotation":
            _look_at = look_at + pos
        else:
            raise ValueError("Camera rotation should be center_facing or trajectory_aligned")
        view_matrix = look_at_matrix(camera_pos, _look_at)
        trajectory.append(view_matrix)
    trajectory = torch.stack(trajectory)
    return apply_transformation(trajectory, world_to_camera_matrix)


def create_spiral_trajectory(
    world_to_camera_matrix,
    center_depth,
    radius_x=0.03,
    radius_y=0.02,
    radius_z=0.0,
    positive=True,
    camera_rotation="center_facing",
    n_steps=13,
    device="cuda",
    start_from_zero=True,
    num_circles=1,
):

    look_at = torch.tensor([0.0, 0.0, center_depth]).to(device)

    # Spiral motion key points
    trajectory = []
    spiral_positions = []
    initial_camera_pos = torch.tensor([0, 0, 0], device=device)  # world_to_camera_matrix[:3, 3].clone()

    example_scale = 1.0

    theta_max = 2 * math.pi * num_circles

    for i in range(n_steps):
        # theta = 2 * math.pi * i / (n_steps-1)  # angle for each point
        theta = theta_max * i / (n_steps - 1)  # angle for each point
        if start_from_zero:
            x = radius_x * (math.cos(theta) - 1) * (1 if positive else -1) * (center_depth / example_scale)
        else:
            x = radius_x * (math.cos(theta)) * (center_depth / example_scale)

        y = radius_y * math.sin(theta) * (center_depth / example_scale)
        z = radius_z * math.sin(theta) * (center_depth / example_scale)
        spiral_positions.append(torch.tensor([x, y, z], device=device))

    for pos in spiral_positions:
        if camera_rotation == "center_facing":
            view_matrix = look_at_matrix(initial_camera_pos + pos, look_at)
        elif camera_rotation == "trajectory_aligned":
            view_matrix = look_at_matrix(initial_camera_pos + pos, look_at + pos * 2)
        elif camera_rotation == "no_rotation":
            view_matrix = look_at_matrix(initial_camera_pos + pos, look_at + pos)
        else:
            raise ValueError("Camera rotation should be center_facing, trajectory_aligned or no_rotation")
        trajectory.append(view_matrix)
    trajectory = torch.stack(trajectory)
    return apply_transformation(trajectory, world_to_camera_matrix)


def generate_camera_trajectory(
    trajectory_type: str,
    initial_w2c: torch.Tensor,  # Shape: (4, 4)
    initial_intrinsics: torch.Tensor,  # Shape: (3, 3)
    num_frames: int,
    movement_distance: float,
    camera_rotation: str,
    center_depth: float = 1.0,
    device: str = "cuda",
):
    """
    Generates a sequence of camera poses (world-to-camera matrices) and intrinsics
    for a specified trajectory type.

    Args:
        trajectory_type: Type of trajectory (e.g., "left", "right", "up", "down", "zoom_in", "zoom_out").
        initial_w2c: Initial world-to-camera matrix (4x4 tensor or num_framesx4x4 tensor).
        initial_intrinsics: Camera intrinsics matrix (3x3 tensor or num_framesx3x3 tensor).
        num_frames: Number of frames (steps) in the trajectory.
        movement_distance: Distance factor for the camera movement.
        camera_rotation: Type of camera rotation ('center_facing', 'no_rotation', 'trajectory_aligned').
        center_depth: Depth of the center point the camera might focus on.
        device: Computation device ("cuda" or "cpu").

    Returns:
        A tuple (generated_w2cs, generated_intrinsics):
        - generated_w2cs: Batch of world-to-camera matrices for the trajectory (1, num_frames, 4, 4 tensor).
        - generated_intrinsics: Batch of camera intrinsics for the trajectory (1, num_frames, 3, 3 tensor).
    """
    if trajectory_type in ["clockwise", "counterclockwise"]:
        new_w2cs_seq = create_spiral_trajectory(
            world_to_camera_matrix=initial_w2c,
            center_depth=center_depth,
            n_steps=num_frames,
            positive=trajectory_type == "clockwise",
            device=device,
            camera_rotation=camera_rotation,
            radius_x=movement_distance,
            radius_y=movement_distance,
        )
    else:
        if trajectory_type == "left":
            positive = False
            axis = "x"
        elif trajectory_type == "right":
            positive = True
            axis = "x"
        elif trajectory_type == "up":
            positive = False  # Assuming 'up' means camera moves in negative y direction if y points down
            axis = "y"
        elif trajectory_type == "down":
            positive = True # Assuming 'down' means camera moves in positive y direction if y points down
            axis = "y"
        elif trajectory_type == "zoom_in":
            positive = True  # Assuming 'zoom_in' means camera moves in positive z direction (forward)
            axis = "z"
        elif trajectory_type == "zoom_out":
            positive = False # Assuming 'zoom_out' means camera moves in negative z direction (backward)
            axis = "z"
        else:
            raise ValueError(f"Unsupported trajectory type: {trajectory_type}")

        # Generate world-to-camera matrices using create_horizontal_trajectory
        new_w2cs_seq = create_horizontal_trajectory(
            world_to_camera_matrix=initial_w2c,
            center_depth=center_depth,
            n_steps=num_frames,
            positive=positive,
            axis=axis,
            distance=movement_distance,
            device=device,
            camera_rotation=camera_rotation,
        )

    generated_w2cs = new_w2cs_seq.unsqueeze(0)  # Shape: [1, num_frames, 4, 4]
    if initial_intrinsics.dim() == 2:
        generated_intrinsics = initial_intrinsics.unsqueeze(0).unsqueeze(0).repeat(1, num_frames, 1, 1)
    else:
        generated_intrinsics = initial_intrinsics.unsqueeze(0)

    return generated_w2cs, generated_intrinsics


def _align_inv_depth_to_depth(
    source_inv_depth: torch.Tensor,
    target_depth: torch.Tensor,
    target_mask: torch.Tensor | None = None,
) -> torch.Tensor:
    """
    Apply affine transformation to align source inverse depth to target depth.

    Args:
        source_inv_depth: Inverse depth map to be aligned. Shape: (H, W).
        target_depth: Target depth map. Shape: (H, W).
        target_mask: Mask of valid target pixels. Shape: (H, W).

    Returns:
        Aligned Depth map. Shape: (H, W).
    """
    target_inv_depth = 1.0 / target_depth
    source_mask = source_inv_depth > 0
    target_depth_mask = target_depth > 0

    if target_mask is None:
        target_mask = target_depth_mask
    else:
        target_mask = torch.logical_and(target_mask > 0, target_depth_mask)

    # Remove outliers
    outlier_quantiles = torch.tensor([0.1, 0.9], device=source_inv_depth.device)

    source_data_low, source_data_high = torch.quantile(source_inv_depth[source_mask], outlier_quantiles)
    target_data_low, target_data_high = torch.quantile(target_inv_depth[target_mask], outlier_quantiles)
    source_mask = (source_inv_depth > source_data_low) & (source_inv_depth < source_data_high)
    target_mask = (target_inv_depth > target_data_low) & (target_inv_depth < target_data_high)

    mask = torch.logical_and(source_mask, target_mask)

    source_data = source_inv_depth[mask].view(-1, 1)
    target_data = target_inv_depth[mask].view(-1, 1)

    ones = torch.ones((source_data.shape[0], 1), device=source_data.device)
    source_data_h = torch.cat([source_data, ones], dim=1)
    transform_matrix = torch.linalg.lstsq(source_data_h, target_data).solution

    scale, bias = transform_matrix[0, 0], transform_matrix[1, 0]
    aligned_inv_depth = source_inv_depth * scale + bias

    return 1.0 / aligned_inv_depth


def align_depth(
    source_depth: torch.Tensor,
    target_depth: torch.Tensor,
    target_mask: torch.Tensor,
    k: torch.Tensor = None,
    c2w: torch.Tensor = None,
    alignment_method: str = "rigid",
    num_iters: int = 100,
    lambda_arap: float = 0.1,
    smoothing_kernel_size: int = 3,
) -> torch.Tensor:
    if alignment_method == "rigid":
        source_inv_depth = 1.0 / source_depth
        source_depth = _align_inv_depth_to_depth(source_inv_depth, target_depth, target_mask)
        return source_depth
    elif alignment_method == "non_rigid":
        if k is None or c2w is None:
            raise ValueError("Camera intrinsics (k) and camera-to-world matrix (c2w) are required for non-rigid alignment")
            
        source_inv_depth = 1.0 / source_depth
        source_depth = _align_inv_depth_to_depth(source_inv_depth, target_depth, target_mask)
        
        # Initialize scale map
        sc_map = torch.ones_like(source_depth).float().to(source_depth.device).requires_grad_(True)
        optimizer = torch.optim.Adam(params=[sc_map], lr=0.001)
        
        # Unproject target depth
        target_unprojected = unproject_points(
            target_depth.unsqueeze(0).unsqueeze(0),  # Add batch and channel dimensions
            c2w.unsqueeze(0),  # Add batch dimension
            k.unsqueeze(0),  # Add batch dimension
            is_depth=True,
            mask=target_mask.unsqueeze(0).unsqueeze(0)  # Add batch and channel dimensions
        ).squeeze(0)  # Remove batch dimension
        
        # Create smoothing kernel
        smoothing_kernel = torch.ones(
            (1, 1, smoothing_kernel_size, smoothing_kernel_size),
            device=source_depth.device
        ) / (smoothing_kernel_size**2)
        
        for _ in range(num_iters):
            # Unproject scaled source depth
            source_unprojected = unproject_points(
                (source_depth * sc_map).unsqueeze(0).unsqueeze(0),  # Add batch and channel dimensions
                c2w.unsqueeze(0),  # Add batch dimension
                k.unsqueeze(0),  # Add batch dimension
                is_depth=True,
                mask=target_mask.unsqueeze(0).unsqueeze(0)  # Add batch and channel dimensions
            ).squeeze(0)  # Remove batch dimension
            
            # Data loss
            data_loss = torch.abs(source_unprojected[target_mask] - target_unprojected[target_mask]).mean()
            
            # Apply smoothing filter to sc_map
            sc_map_reshaped = sc_map.unsqueeze(0).unsqueeze(0)
            sc_map_smoothed = F.conv2d(
                sc_map_reshaped,
                smoothing_kernel,
                padding=smoothing_kernel_size // 2
            ).squeeze(0).squeeze(0)
            
            # ARAP loss
            arap_loss = torch.abs(sc_map_smoothed - sc_map).mean()
            
            # Total loss
            loss = data_loss + lambda_arap * arap_loss
            
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            
        return source_depth * sc_map
    else:
        raise ValueError(f"Unsupported alignment method: {alignment_method}")