Spaces:
Build error
Build error
File size: 13,977 Bytes
b6af722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import math
import torch.nn.functional as F
from .forward_warp_utils_pytorch import unproject_points
def apply_transformation(Bx4x4, another_matrix):
B = Bx4x4.shape[0]
if another_matrix.dim() == 2:
another_matrix = another_matrix.unsqueeze(0).expand(B, -1, -1) # Make another_matrix compatible with batch size
transformed_matrix = torch.bmm(Bx4x4, another_matrix) # Shape: (B, 4, 4)
return transformed_matrix
def look_at_matrix(camera_pos, target, invert_pos=True):
"""Creates a 4x4 look-at matrix, keeping the camera pointing towards a target."""
forward = (target - camera_pos).float()
forward = forward / torch.norm(forward)
up = torch.tensor([0.0, 1.0, 0.0], device=camera_pos.device) # assuming Y-up coordinate system
right = torch.cross(up, forward)
right = right / torch.norm(right)
up = torch.cross(forward, right)
look_at = torch.eye(4, device=camera_pos.device)
look_at[0, :3] = right
look_at[1, :3] = up
look_at[2, :3] = forward
look_at[:3, 3] = (-camera_pos) if invert_pos else camera_pos
return look_at
def create_horizontal_trajectory(
world_to_camera_matrix, center_depth, positive=True, n_steps=13, distance=0.1, device="cuda", axis="x", camera_rotation="center_facing"
):
look_at = torch.tensor([0.0, 0.0, center_depth]).to(device)
# Spiral motion key points
trajectory = []
translation_positions = []
initial_camera_pos = torch.tensor([0, 0, 0], device=device)
for i in range(n_steps):
if axis == "x": # pos - right
x = i * distance * center_depth / n_steps * (1 if positive else -1)
y = 0
z = 0
elif axis == "y": # pos - down
x = 0
y = i * distance * center_depth / n_steps * (1 if positive else -1)
z = 0
elif axis == "z": # pos - in
x = 0
y = 0
z = i * distance * center_depth / n_steps * (1 if positive else -1)
else:
raise ValueError("Axis should be x, y or z")
translation_positions.append(torch.tensor([x, y, z], device=device))
for pos in translation_positions:
camera_pos = initial_camera_pos + pos
if camera_rotation == "trajectory_aligned":
_look_at = look_at + pos * 2
elif camera_rotation == "center_facing":
_look_at = look_at
elif camera_rotation == "no_rotation":
_look_at = look_at + pos
else:
raise ValueError("Camera rotation should be center_facing or trajectory_aligned")
view_matrix = look_at_matrix(camera_pos, _look_at)
trajectory.append(view_matrix)
trajectory = torch.stack(trajectory)
return apply_transformation(trajectory, world_to_camera_matrix)
def create_spiral_trajectory(
world_to_camera_matrix,
center_depth,
radius_x=0.03,
radius_y=0.02,
radius_z=0.0,
positive=True,
camera_rotation="center_facing",
n_steps=13,
device="cuda",
start_from_zero=True,
num_circles=1,
):
look_at = torch.tensor([0.0, 0.0, center_depth]).to(device)
# Spiral motion key points
trajectory = []
spiral_positions = []
initial_camera_pos = torch.tensor([0, 0, 0], device=device) # world_to_camera_matrix[:3, 3].clone()
example_scale = 1.0
theta_max = 2 * math.pi * num_circles
for i in range(n_steps):
# theta = 2 * math.pi * i / (n_steps-1) # angle for each point
theta = theta_max * i / (n_steps - 1) # angle for each point
if start_from_zero:
x = radius_x * (math.cos(theta) - 1) * (1 if positive else -1) * (center_depth / example_scale)
else:
x = radius_x * (math.cos(theta)) * (center_depth / example_scale)
y = radius_y * math.sin(theta) * (center_depth / example_scale)
z = radius_z * math.sin(theta) * (center_depth / example_scale)
spiral_positions.append(torch.tensor([x, y, z], device=device))
for pos in spiral_positions:
if camera_rotation == "center_facing":
view_matrix = look_at_matrix(initial_camera_pos + pos, look_at)
elif camera_rotation == "trajectory_aligned":
view_matrix = look_at_matrix(initial_camera_pos + pos, look_at + pos * 2)
elif camera_rotation == "no_rotation":
view_matrix = look_at_matrix(initial_camera_pos + pos, look_at + pos)
else:
raise ValueError("Camera rotation should be center_facing, trajectory_aligned or no_rotation")
trajectory.append(view_matrix)
trajectory = torch.stack(trajectory)
return apply_transformation(trajectory, world_to_camera_matrix)
def generate_camera_trajectory(
trajectory_type: str,
initial_w2c: torch.Tensor, # Shape: (4, 4)
initial_intrinsics: torch.Tensor, # Shape: (3, 3)
num_frames: int,
movement_distance: float,
camera_rotation: str,
center_depth: float = 1.0,
device: str = "cuda",
):
"""
Generates a sequence of camera poses (world-to-camera matrices) and intrinsics
for a specified trajectory type.
Args:
trajectory_type: Type of trajectory (e.g., "left", "right", "up", "down", "zoom_in", "zoom_out").
initial_w2c: Initial world-to-camera matrix (4x4 tensor or num_framesx4x4 tensor).
initial_intrinsics: Camera intrinsics matrix (3x3 tensor or num_framesx3x3 tensor).
num_frames: Number of frames (steps) in the trajectory.
movement_distance: Distance factor for the camera movement.
camera_rotation: Type of camera rotation ('center_facing', 'no_rotation', 'trajectory_aligned').
center_depth: Depth of the center point the camera might focus on.
device: Computation device ("cuda" or "cpu").
Returns:
A tuple (generated_w2cs, generated_intrinsics):
- generated_w2cs: Batch of world-to-camera matrices for the trajectory (1, num_frames, 4, 4 tensor).
- generated_intrinsics: Batch of camera intrinsics for the trajectory (1, num_frames, 3, 3 tensor).
"""
if trajectory_type in ["clockwise", "counterclockwise"]:
new_w2cs_seq = create_spiral_trajectory(
world_to_camera_matrix=initial_w2c,
center_depth=center_depth,
n_steps=num_frames,
positive=trajectory_type == "clockwise",
device=device,
camera_rotation=camera_rotation,
radius_x=movement_distance,
radius_y=movement_distance,
)
else:
if trajectory_type == "left":
positive = False
axis = "x"
elif trajectory_type == "right":
positive = True
axis = "x"
elif trajectory_type == "up":
positive = False # Assuming 'up' means camera moves in negative y direction if y points down
axis = "y"
elif trajectory_type == "down":
positive = True # Assuming 'down' means camera moves in positive y direction if y points down
axis = "y"
elif trajectory_type == "zoom_in":
positive = True # Assuming 'zoom_in' means camera moves in positive z direction (forward)
axis = "z"
elif trajectory_type == "zoom_out":
positive = False # Assuming 'zoom_out' means camera moves in negative z direction (backward)
axis = "z"
else:
raise ValueError(f"Unsupported trajectory type: {trajectory_type}")
# Generate world-to-camera matrices using create_horizontal_trajectory
new_w2cs_seq = create_horizontal_trajectory(
world_to_camera_matrix=initial_w2c,
center_depth=center_depth,
n_steps=num_frames,
positive=positive,
axis=axis,
distance=movement_distance,
device=device,
camera_rotation=camera_rotation,
)
generated_w2cs = new_w2cs_seq.unsqueeze(0) # Shape: [1, num_frames, 4, 4]
if initial_intrinsics.dim() == 2:
generated_intrinsics = initial_intrinsics.unsqueeze(0).unsqueeze(0).repeat(1, num_frames, 1, 1)
else:
generated_intrinsics = initial_intrinsics.unsqueeze(0)
return generated_w2cs, generated_intrinsics
def _align_inv_depth_to_depth(
source_inv_depth: torch.Tensor,
target_depth: torch.Tensor,
target_mask: torch.Tensor | None = None,
) -> torch.Tensor:
"""
Apply affine transformation to align source inverse depth to target depth.
Args:
source_inv_depth: Inverse depth map to be aligned. Shape: (H, W).
target_depth: Target depth map. Shape: (H, W).
target_mask: Mask of valid target pixels. Shape: (H, W).
Returns:
Aligned Depth map. Shape: (H, W).
"""
target_inv_depth = 1.0 / target_depth
source_mask = source_inv_depth > 0
target_depth_mask = target_depth > 0
if target_mask is None:
target_mask = target_depth_mask
else:
target_mask = torch.logical_and(target_mask > 0, target_depth_mask)
# Remove outliers
outlier_quantiles = torch.tensor([0.1, 0.9], device=source_inv_depth.device)
source_data_low, source_data_high = torch.quantile(source_inv_depth[source_mask], outlier_quantiles)
target_data_low, target_data_high = torch.quantile(target_inv_depth[target_mask], outlier_quantiles)
source_mask = (source_inv_depth > source_data_low) & (source_inv_depth < source_data_high)
target_mask = (target_inv_depth > target_data_low) & (target_inv_depth < target_data_high)
mask = torch.logical_and(source_mask, target_mask)
source_data = source_inv_depth[mask].view(-1, 1)
target_data = target_inv_depth[mask].view(-1, 1)
ones = torch.ones((source_data.shape[0], 1), device=source_data.device)
source_data_h = torch.cat([source_data, ones], dim=1)
transform_matrix = torch.linalg.lstsq(source_data_h, target_data).solution
scale, bias = transform_matrix[0, 0], transform_matrix[1, 0]
aligned_inv_depth = source_inv_depth * scale + bias
return 1.0 / aligned_inv_depth
def align_depth(
source_depth: torch.Tensor,
target_depth: torch.Tensor,
target_mask: torch.Tensor,
k: torch.Tensor = None,
c2w: torch.Tensor = None,
alignment_method: str = "rigid",
num_iters: int = 100,
lambda_arap: float = 0.1,
smoothing_kernel_size: int = 3,
) -> torch.Tensor:
if alignment_method == "rigid":
source_inv_depth = 1.0 / source_depth
source_depth = _align_inv_depth_to_depth(source_inv_depth, target_depth, target_mask)
return source_depth
elif alignment_method == "non_rigid":
if k is None or c2w is None:
raise ValueError("Camera intrinsics (k) and camera-to-world matrix (c2w) are required for non-rigid alignment")
source_inv_depth = 1.0 / source_depth
source_depth = _align_inv_depth_to_depth(source_inv_depth, target_depth, target_mask)
# Initialize scale map
sc_map = torch.ones_like(source_depth).float().to(source_depth.device).requires_grad_(True)
optimizer = torch.optim.Adam(params=[sc_map], lr=0.001)
# Unproject target depth
target_unprojected = unproject_points(
target_depth.unsqueeze(0).unsqueeze(0), # Add batch and channel dimensions
c2w.unsqueeze(0), # Add batch dimension
k.unsqueeze(0), # Add batch dimension
is_depth=True,
mask=target_mask.unsqueeze(0).unsqueeze(0) # Add batch and channel dimensions
).squeeze(0) # Remove batch dimension
# Create smoothing kernel
smoothing_kernel = torch.ones(
(1, 1, smoothing_kernel_size, smoothing_kernel_size),
device=source_depth.device
) / (smoothing_kernel_size**2)
for _ in range(num_iters):
# Unproject scaled source depth
source_unprojected = unproject_points(
(source_depth * sc_map).unsqueeze(0).unsqueeze(0), # Add batch and channel dimensions
c2w.unsqueeze(0), # Add batch dimension
k.unsqueeze(0), # Add batch dimension
is_depth=True,
mask=target_mask.unsqueeze(0).unsqueeze(0) # Add batch and channel dimensions
).squeeze(0) # Remove batch dimension
# Data loss
data_loss = torch.abs(source_unprojected[target_mask] - target_unprojected[target_mask]).mean()
# Apply smoothing filter to sc_map
sc_map_reshaped = sc_map.unsqueeze(0).unsqueeze(0)
sc_map_smoothed = F.conv2d(
sc_map_reshaped,
smoothing_kernel,
padding=smoothing_kernel_size // 2
).squeeze(0).squeeze(0)
# ARAP loss
arap_loss = torch.abs(sc_map_smoothed - sc_map).mean()
# Total loss
loss = data_loss + lambda_arap * arap_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
return source_depth * sc_map
else:
raise ValueError(f"Unsupported alignment method: {alignment_method}")
|