File size: 5,803 Bytes
b6af722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Data loading utilities for the distributed format:
- RGB from mp4
- Depth from float16 numpy
- Camera data from float32 numpy
"""

import os
import numpy as np
import torch
import cv2
from pathlib import Path


def load_rgb_from_mp4(video_path):
    """
    Load RGB video from mp4 file and convert to tensor.
    
    Args:
        video_path: str, path to the mp4 file
        
    Returns:
        torch.Tensor: RGB tensor of shape [T, C, H, W] with range [-1, 1]
    """
    cap = cv2.VideoCapture(video_path)
    
    if not cap.isOpened():
        raise RuntimeError(f"Failed to open video file: {video_path}")
    
    frames = []
    while True:
        ret, frame = cap.read()
        if not ret:
            break
        
        # Convert BGR to RGB
        frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        frames.append(frame_rgb)
    
    cap.release()
    
    if not frames:
        raise ValueError(f"No frames found in video: {video_path}")
    
    # Convert to numpy array and then tensor
    frames_np = np.stack(frames, axis=0)  # [T, H, W, C]
    frames_tensor = torch.from_numpy(frames_np).permute(0, 3, 1, 2).float()  # [T, C, H, W]
    
    # Convert from [0, 255] to [-1, 1]
    frames_tensor = (frames_tensor / 127.5) - 1.0
    
    return frames_tensor


def load_depth_from_numpy(depth_path):
    """
    Load depth data from compressed NPZ file.
    
    Args:
        depth_path: str, path to the NPZ file
        
    Returns:
        torch.Tensor: Depth tensor of shape [T, 1, H, W]
    """
    data = np.load(depth_path)
    depth_np = data['depth']  # [T, H, W]
    depth_tensor = torch.from_numpy(depth_np.astype(np.float32))
    
    # Add channel dimension: [T, H, W] -> [T, 1, H, W]
    depth_tensor = depth_tensor.unsqueeze(1)
    
    return depth_tensor


def load_mask_from_numpy(mask_path):
    """
    Load mask data from compressed NPZ file.
    
    Args:
        mask_path: str, path to the NPZ file
        
    Returns:
        torch.Tensor: Mask tensor of shape [T, 1, H, W]
    """
    data = np.load(mask_path)
    mask_np = data['mask']  # [T, H, W] as bool
    mask_tensor = torch.from_numpy(mask_np.astype(np.float32))  # Convert bool to float32
    
    # Add channel dimension: [T, H, W] -> [T, 1, H, W]
    mask_tensor = mask_tensor.unsqueeze(1)
    
    return mask_tensor


def load_camera_from_numpy(data_dir):
    """
    Load camera parameters from compressed NPZ file.
    
    Args:
        data_dir: str, directory containing camera.npz
        
    Returns:
        tuple: (w2c_tensor, intrinsics_tensor)
            - w2c_tensor: torch.Tensor of shape [T, 4, 4]
            - intrinsics_tensor: torch.Tensor of shape [T, 3, 3]
    """
    camera_path = os.path.join(data_dir, "camera.npz")
    
    if not os.path.exists(camera_path):
        raise FileNotFoundError(f"camera file not found: {camera_path}")
    
    data = np.load(camera_path)
    w2c_np = data['w2c']
    intrinsics_np = data['intrinsics']
    
    w2c_tensor = torch.from_numpy(w2c_np)
    intrinsics_tensor = torch.from_numpy(intrinsics_np)
    
    return w2c_tensor, intrinsics_tensor


def load_data_distributed_format(data_dir):
    """Load data from distributed format (mp4 + numpy files)"""
    data_path = Path(data_dir)
    
    # Load RGB from mp4
    cap = cv2.VideoCapture(str(data_path / "rgb.mp4"))
    frames = []
    while True:
        ret, frame = cap.read()
        if not ret:
            break
        frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
    cap.release()
    
    frames_np = np.stack(frames, axis=0)
    image_tensor = torch.from_numpy(frames_np).permute(0, 3, 1, 2).float()
    image_tensor = (image_tensor / 127.5) - 1.0  # [0,255] -> [-1,1]
    
    # Load depth and mask
    depth_tensor = torch.from_numpy(np.load(data_path / "depth.npz")['depth'].astype(np.float32)).unsqueeze(1)
    mask_tensor = torch.from_numpy(np.load(data_path / "mask.npz")['mask'].astype(np.float32)).unsqueeze(1)
    
    # Load camera data
    camera_data = np.load(data_path / "camera.npz")
    w2c_tensor = torch.from_numpy(camera_data['w2c'])
    intrinsics_tensor = torch.from_numpy(camera_data['intrinsics'])
    
    return image_tensor, depth_tensor, mask_tensor, w2c_tensor, intrinsics_tensor


def load_data_packaged_format(pt_path):
    """
    Load data from the packaged pt format for backward compatibility.
    
    Args:
        pt_path: str, path to the pt file
        
    Returns:
        tuple: (image_tensor, depth_tensor, mask_tensor, w2c_tensor, intrinsics_tensor)
    """
    data = torch.load(pt_path)
    
    if len(data) != 5:
        raise ValueError(f"Expected 5 tensors in pt file, got {len(data)}")
    
    return data


def load_data_auto_detect(input_path):
    """Auto-detect format and load data"""
    input_path = Path(input_path)
    
    if input_path.is_file() and input_path.suffix == '.pt':
        return load_data_packaged_format(input_path)
    elif input_path.is_dir():
        return load_data_distributed_format(input_path)
    else:
        raise ValueError(f"Invalid input path: {input_path}")