File size: 10,268 Bytes
b6af722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Any, Optional

import torch

from cosmos_predict1.diffusion.inference.inference_utils import (
    generate_world_from_video,
    get_video_batch,
    load_model_by_config,
)
from cosmos_predict1.diffusion.model.model_gen3c import DiffusionGen3CModel
from cosmos_predict1.diffusion.inference.world_generation_pipeline import DiffusionVideo2WorldGenerationPipeline
from cosmos_predict1.utils import log

class Gen3cPipeline(DiffusionVideo2WorldGenerationPipeline):
    def __init__(
        self,
        inference_type: str,
        checkpoint_dir: str,
        checkpoint_name: str,
        prompt_upsampler_dir: Optional[str] = None,
        enable_prompt_upsampler: bool = True,
        has_text_input: bool = True,
        offload_network: bool = False,
        offload_tokenizer: bool = False,
        offload_text_encoder_model: bool = False,
        offload_prompt_upsampler: bool = False,
        offload_guardrail_models: bool = False,
        disable_guardrail: bool = False,
        guidance: float = 7.0,
        num_steps: int = 35,
        height: int = 704,
        width: int = 1280,
        fps: int = 24,
        num_video_frames: int = 121,
        seed: int = 0,
    ):
        """Initialize diffusion world generation pipeline.

        Args:
            inference_type: Type of world generation ('text2world' or 'video2world')
            checkpoint_dir: Base directory containing model checkpoints
            checkpoint_name: Name of the diffusion transformer checkpoint to use
            prompt_upsampler_dir: Directory containing prompt upsampler model weights
            enable_prompt_upsampler: Whether to use prompt upsampling
            has_text_input: Whether the pipeline takes text input for world generation
            offload_network: Whether to offload diffusion transformer after inference
            offload_tokenizer: Whether to offload tokenizer after inference
            offload_text_encoder_model: Whether to offload T5 model after inference
            offload_prompt_upsampler: Whether to offload prompt upsampler
            offload_guardrail_models: Whether to offload guardrail models
            disable_guardrail: Whether to disable guardrail
            guidance: Classifier-free guidance scale
            num_steps: Number of diffusion sampling steps
            height: Height of output video
            width: Width of output video
            fps: Frames per second of output video
            num_video_frames: Number of frames to generate
            seed: Random seed for sampling
        """
        super().__init__(
            inference_type=inference_type,
            checkpoint_dir=checkpoint_dir,
            checkpoint_name=checkpoint_name,
            prompt_upsampler_dir=prompt_upsampler_dir,
            enable_prompt_upsampler=enable_prompt_upsampler,
            has_text_input=has_text_input,
            offload_network=offload_network,
            offload_tokenizer=offload_tokenizer,
            offload_text_encoder_model=offload_text_encoder_model,
            offload_prompt_upsampler=offload_prompt_upsampler,
            offload_guardrail_models=offload_guardrail_models,
            disable_guardrail=disable_guardrail,
            guidance=guidance,
            num_steps=num_steps,
            height=height,
            width=width,
            fps=fps,
            num_video_frames=num_video_frames,
            seed=seed,
            num_input_frames=1,
        )

    def _load_model(self):
        self.model = load_model_by_config(
            config_job_name=self.model_name,
            config_file="cosmos_predict1/diffusion/config/config.py",
            model_class=DiffusionGen3CModel,
        )

    def generate(
        self,
        prompt: str,
        image_path: str,
        rendered_warp_images: torch.Tensor,
        rendered_warp_masks: torch.Tensor,
        negative_prompt: Optional[str] = None,
    ) -> Any:
        """Generate video from text prompt and optional image.

        Pipeline steps:
        1. Run safety checks on input prompt
        2. Enhance prompt using upsampler if enabled
        3. Run safety checks on upsampled prompt if applicable
        4. Convert prompt to embeddings
        5. Generate video frames using diffusion
        6. Run safety checks and apply face blur on generated video frames

        Args:
            prompt: Text description of desired video
            image_  path: Path to conditioning image
            rendered_warp_images: Rendered warp images
            rendered_warp_masks: Rendered warp masks
            negative_prompt: Optional text to guide what not to generate

        Returns:
            tuple: (
                Generated video frames as uint8 np.ndarray [T, H, W, C],
                Final prompt used for generation (may be enhanced)
            ), or None if content fails guardrail safety checks
        """
        if type(image_path) == str:
            log.info(f"Run with image path: {image_path}")
        log.info(f"Run with negative prompt: {negative_prompt}")
        log.info(f"Run with prompt upsampler: {self.enable_prompt_upsampler}")

        log.info(f"Run with prompt: {prompt}")
        if not self.disable_guardrail:
            log.info(f"Run guardrail on {'upsampled' if self.enable_prompt_upsampler else 'text'} prompt")
            is_safe = self._run_guardrail_on_prompt_with_offload(prompt)
            if not is_safe:
                log.critical(f"Input {'upsampled' if self.enable_prompt_upsampler else 'text'} prompt is not safe")
                return None
            log.info(f"Pass guardrail on {'upsampled' if self.enable_prompt_upsampler else 'text'} prompt")
        else:
            log.info("Not running guardrail")

        log.info("Run text embedding on prompt")
        if negative_prompt:
            prompts = [prompt, negative_prompt]
        else:
            prompts = [prompt]
        prompt_embeddings, _ = self._run_text_embedding_on_prompt_with_offload(prompts)
        prompt_embedding = prompt_embeddings[0]
        negative_prompt_embedding = prompt_embeddings[1] if negative_prompt else None
        log.info("Finish text embedding on prompt")

        # Generate video
        log.info("Run generation")
        video = self._run_model_with_offload(
            prompt_embedding,
            negative_prompt_embedding=negative_prompt_embedding,
            image_or_video_path=image_path,
            rendered_warp_images=rendered_warp_images,
            rendered_warp_masks=rendered_warp_masks,
        )
        log.info("Finish generation")

        if not self.disable_guardrail:
            log.info("Run guardrail on generated video")
            video = self._run_guardrail_on_video_with_offload(video)
            if video is None:
                log.critical("Generated video is not safe")
                return None
            log.info("Pass guardrail on generated video")

        return video, prompt

    def _run_model_with_offload(
        self,
        prompt_embedding: torch.Tensor,
        image_or_video_path: str,
        rendered_warp_images: torch.Tensor,
        rendered_warp_masks: torch.Tensor,
        negative_prompt_embedding: Optional[torch.Tensor] = None,
    ) -> Any:
        """Generate world representation with automatic model offloading.

        Wraps the core generation process with model loading/offloading logic
        to minimize GPU memory usage during inference.

        Args:
            prompt_embedding: Text embedding tensor from T5 encoder
            image_or_video_path: Path to conditioning image or video
            negative_prompt_embedding: Optional embedding for negative prompt guidance

        Returns:
            np.ndarray: Generated world representation as numpy array
        """
        if self.offload_tokenizer:
            self._load_tokenizer()

        condition_latent = self._run_tokenizer_encoding(image_or_video_path)

        if self.offload_network:
            self._load_network()

        sample = self._run_model(prompt_embedding, condition_latent, rendered_warp_images, rendered_warp_masks, negative_prompt_embedding)

        if self.offload_network:
            self._offload_network()

        sample = self._run_tokenizer_decoding(sample)

        if self.offload_tokenizer:
            self._offload_tokenizer()

        return sample

    def _run_model(
        self,
        embedding: torch.Tensor,
        condition_latent: torch.Tensor,
        rendered_warp_images: torch.Tensor,
        rendered_warp_masks: torch.Tensor,
        negative_prompt_embedding: torch.Tensor | None = None,
    ) -> Any:
        data_batch, state_shape = get_video_batch(
            model=self.model,
            prompt_embedding=embedding,
            negative_prompt_embedding=negative_prompt_embedding,
            height=self.height,
            width=self.width,
            fps=self.fps,
            num_video_frames=self.num_video_frames,
        )
        data_batch["condition_state"] = rendered_warp_images
        data_batch["condition_state_mask"] = rendered_warp_masks
        # Generate video frames
        video = generate_world_from_video(
            model=self.model,
            state_shape=self.model.state_shape,
            is_negative_prompt=True,
            data_batch=data_batch,
            guidance=self.guidance,
            num_steps=self.num_steps,
            seed=self.seed,
            condition_latent=condition_latent,
            num_input_frames=self.num_input_frames,
        )

        return video