Spaces:
Build error
Build error
File size: 10,268 Bytes
b6af722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Optional
import torch
from cosmos_predict1.diffusion.inference.inference_utils import (
generate_world_from_video,
get_video_batch,
load_model_by_config,
)
from cosmos_predict1.diffusion.model.model_gen3c import DiffusionGen3CModel
from cosmos_predict1.diffusion.inference.world_generation_pipeline import DiffusionVideo2WorldGenerationPipeline
from cosmos_predict1.utils import log
class Gen3cPipeline(DiffusionVideo2WorldGenerationPipeline):
def __init__(
self,
inference_type: str,
checkpoint_dir: str,
checkpoint_name: str,
prompt_upsampler_dir: Optional[str] = None,
enable_prompt_upsampler: bool = True,
has_text_input: bool = True,
offload_network: bool = False,
offload_tokenizer: bool = False,
offload_text_encoder_model: bool = False,
offload_prompt_upsampler: bool = False,
offload_guardrail_models: bool = False,
disable_guardrail: bool = False,
guidance: float = 7.0,
num_steps: int = 35,
height: int = 704,
width: int = 1280,
fps: int = 24,
num_video_frames: int = 121,
seed: int = 0,
):
"""Initialize diffusion world generation pipeline.
Args:
inference_type: Type of world generation ('text2world' or 'video2world')
checkpoint_dir: Base directory containing model checkpoints
checkpoint_name: Name of the diffusion transformer checkpoint to use
prompt_upsampler_dir: Directory containing prompt upsampler model weights
enable_prompt_upsampler: Whether to use prompt upsampling
has_text_input: Whether the pipeline takes text input for world generation
offload_network: Whether to offload diffusion transformer after inference
offload_tokenizer: Whether to offload tokenizer after inference
offload_text_encoder_model: Whether to offload T5 model after inference
offload_prompt_upsampler: Whether to offload prompt upsampler
offload_guardrail_models: Whether to offload guardrail models
disable_guardrail: Whether to disable guardrail
guidance: Classifier-free guidance scale
num_steps: Number of diffusion sampling steps
height: Height of output video
width: Width of output video
fps: Frames per second of output video
num_video_frames: Number of frames to generate
seed: Random seed for sampling
"""
super().__init__(
inference_type=inference_type,
checkpoint_dir=checkpoint_dir,
checkpoint_name=checkpoint_name,
prompt_upsampler_dir=prompt_upsampler_dir,
enable_prompt_upsampler=enable_prompt_upsampler,
has_text_input=has_text_input,
offload_network=offload_network,
offload_tokenizer=offload_tokenizer,
offload_text_encoder_model=offload_text_encoder_model,
offload_prompt_upsampler=offload_prompt_upsampler,
offload_guardrail_models=offload_guardrail_models,
disable_guardrail=disable_guardrail,
guidance=guidance,
num_steps=num_steps,
height=height,
width=width,
fps=fps,
num_video_frames=num_video_frames,
seed=seed,
num_input_frames=1,
)
def _load_model(self):
self.model = load_model_by_config(
config_job_name=self.model_name,
config_file="cosmos_predict1/diffusion/config/config.py",
model_class=DiffusionGen3CModel,
)
def generate(
self,
prompt: str,
image_path: str,
rendered_warp_images: torch.Tensor,
rendered_warp_masks: torch.Tensor,
negative_prompt: Optional[str] = None,
) -> Any:
"""Generate video from text prompt and optional image.
Pipeline steps:
1. Run safety checks on input prompt
2. Enhance prompt using upsampler if enabled
3. Run safety checks on upsampled prompt if applicable
4. Convert prompt to embeddings
5. Generate video frames using diffusion
6. Run safety checks and apply face blur on generated video frames
Args:
prompt: Text description of desired video
image_ path: Path to conditioning image
rendered_warp_images: Rendered warp images
rendered_warp_masks: Rendered warp masks
negative_prompt: Optional text to guide what not to generate
Returns:
tuple: (
Generated video frames as uint8 np.ndarray [T, H, W, C],
Final prompt used for generation (may be enhanced)
), or None if content fails guardrail safety checks
"""
if type(image_path) == str:
log.info(f"Run with image path: {image_path}")
log.info(f"Run with negative prompt: {negative_prompt}")
log.info(f"Run with prompt upsampler: {self.enable_prompt_upsampler}")
log.info(f"Run with prompt: {prompt}")
if not self.disable_guardrail:
log.info(f"Run guardrail on {'upsampled' if self.enable_prompt_upsampler else 'text'} prompt")
is_safe = self._run_guardrail_on_prompt_with_offload(prompt)
if not is_safe:
log.critical(f"Input {'upsampled' if self.enable_prompt_upsampler else 'text'} prompt is not safe")
return None
log.info(f"Pass guardrail on {'upsampled' if self.enable_prompt_upsampler else 'text'} prompt")
else:
log.info("Not running guardrail")
log.info("Run text embedding on prompt")
if negative_prompt:
prompts = [prompt, negative_prompt]
else:
prompts = [prompt]
prompt_embeddings, _ = self._run_text_embedding_on_prompt_with_offload(prompts)
prompt_embedding = prompt_embeddings[0]
negative_prompt_embedding = prompt_embeddings[1] if negative_prompt else None
log.info("Finish text embedding on prompt")
# Generate video
log.info("Run generation")
video = self._run_model_with_offload(
prompt_embedding,
negative_prompt_embedding=negative_prompt_embedding,
image_or_video_path=image_path,
rendered_warp_images=rendered_warp_images,
rendered_warp_masks=rendered_warp_masks,
)
log.info("Finish generation")
if not self.disable_guardrail:
log.info("Run guardrail on generated video")
video = self._run_guardrail_on_video_with_offload(video)
if video is None:
log.critical("Generated video is not safe")
return None
log.info("Pass guardrail on generated video")
return video, prompt
def _run_model_with_offload(
self,
prompt_embedding: torch.Tensor,
image_or_video_path: str,
rendered_warp_images: torch.Tensor,
rendered_warp_masks: torch.Tensor,
negative_prompt_embedding: Optional[torch.Tensor] = None,
) -> Any:
"""Generate world representation with automatic model offloading.
Wraps the core generation process with model loading/offloading logic
to minimize GPU memory usage during inference.
Args:
prompt_embedding: Text embedding tensor from T5 encoder
image_or_video_path: Path to conditioning image or video
negative_prompt_embedding: Optional embedding for negative prompt guidance
Returns:
np.ndarray: Generated world representation as numpy array
"""
if self.offload_tokenizer:
self._load_tokenizer()
condition_latent = self._run_tokenizer_encoding(image_or_video_path)
if self.offload_network:
self._load_network()
sample = self._run_model(prompt_embedding, condition_latent, rendered_warp_images, rendered_warp_masks, negative_prompt_embedding)
if self.offload_network:
self._offload_network()
sample = self._run_tokenizer_decoding(sample)
if self.offload_tokenizer:
self._offload_tokenizer()
return sample
def _run_model(
self,
embedding: torch.Tensor,
condition_latent: torch.Tensor,
rendered_warp_images: torch.Tensor,
rendered_warp_masks: torch.Tensor,
negative_prompt_embedding: torch.Tensor | None = None,
) -> Any:
data_batch, state_shape = get_video_batch(
model=self.model,
prompt_embedding=embedding,
negative_prompt_embedding=negative_prompt_embedding,
height=self.height,
width=self.width,
fps=self.fps,
num_video_frames=self.num_video_frames,
)
data_batch["condition_state"] = rendered_warp_images
data_batch["condition_state_mask"] = rendered_warp_masks
# Generate video frames
video = generate_world_from_video(
model=self.model,
state_shape=self.model.state_shape,
is_negative_prompt=True,
data_batch=data_batch,
guidance=self.guidance,
num_steps=self.num_steps,
seed=self.seed,
condition_latent=condition_latent,
num_input_frames=self.num_input_frames,
)
return video
|