File size: 20,380 Bytes
b6af722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
import cv2
from moge.model.v1 import MoGeModel
import torch
import numpy as np
from cosmos_predict1.diffusion.inference.inference_utils import (
    add_common_arguments,
    check_input_frames,
    validate_args,
)
from cosmos_predict1.diffusion.inference.gen3c_pipeline import Gen3cPipeline
from cosmos_predict1.utils import log, misc
from cosmos_predict1.utils.io import read_prompts_from_file, save_video
from cosmos_predict1.diffusion.inference.cache_3d import Cache3D_Buffer
from cosmos_predict1.diffusion.inference.camera_utils import generate_camera_trajectory
import torch.nn.functional as F
torch.enable_grad(False)

def create_parser() -> argparse.ArgumentParser:
    parser = argparse.ArgumentParser(description="Video to world generation demo script")
    # Add common arguments
    add_common_arguments(parser)

    parser.add_argument(
        "--prompt_upsampler_dir",
        type=str,
        default="Pixtral-12B",
        help="Prompt upsampler weights directory relative to checkpoint_dir",
    ) # TODO: do we need this?
    parser.add_argument(
        "--input_image_path",
        type=str,
        help="Input image path for generating a single video",
    )
    parser.add_argument(
        "--trajectory",
        type=str,
        choices=[
            "left",
            "right",
            "up",
            "down",
            "zoom_in",
            "zoom_out",
            "clockwise",
            "counterclockwise",
            "none",
        ],
        default="left",
        help="Select a trajectory type from the available options (default: original)",
    )
    parser.add_argument(
        "--camera_rotation",
        type=str,
        choices=["center_facing", "no_rotation", "trajectory_aligned"],
        default="center_facing",
        help="Controls camera rotation during movement: center_facing (rotate to look at center), no_rotation (keep orientation), or trajectory_aligned (rotate in the direction of movement)",
    )
    parser.add_argument(
        "--movement_distance",
        type=float,
        default=0.3,
        help="Distance of the camera from the center of the scene",
    )
    parser.add_argument(
        "--noise_aug_strength",
        type=float,
        default=0.0,
        help="Strength of noise augmentation on warped frames",
    )
    parser.add_argument(
        "--save_buffer",
        action="store_true",
        help="If set, save the warped images (buffer) side by side with the output video.",
    )
    parser.add_argument(
        "--filter_points_threshold",
        type=float,
        default=0.05,
        help="If set, filter the points continuity of the warped images.",
    )
    parser.add_argument(
        "--foreground_masking",
        action="store_true",
        help="If set, use foreground masking for the warped images.",
    )
    return parser

def parse_arguments() -> argparse.Namespace:
    parser = create_parser()
    return parser.parse_args()


def validate_args(args):
    assert args.num_video_frames is not None, "num_video_frames must be provided"
    assert (args.num_video_frames - 1) % 120 == 0, "num_video_frames must be 121, 241, 361, ... (N*120+1)"

def _predict_moge_depth(current_image_path: str | np.ndarray,
                        target_h: int, target_w: int,
                        device: torch.device, moge_model: MoGeModel):
    """Handles MoGe depth prediction for a single image.

    If the image is directly provided as a NumPy array, it should have shape [H, W, C],
    where the channels are RGB and the pixel values are in [0..255].
    """

    if isinstance(current_image_path, str):
        input_image_bgr = cv2.imread(current_image_path)
        if input_image_bgr is None:
            raise FileNotFoundError(f"Input image not found: {current_image_path}")
        input_image_rgb = cv2.cvtColor(input_image_bgr, cv2.COLOR_BGR2RGB)
    else:
        input_image_rgb = current_image_path
    del current_image_path

    depth_pred_h, depth_pred_w = 720, 1280

    input_image_for_depth_resized = cv2.resize(input_image_rgb, (depth_pred_w, depth_pred_h))
    input_image_for_depth_tensor_chw = torch.tensor(input_image_for_depth_resized / 255.0, dtype=torch.float32, device=device).permute(2, 0, 1)
    moge_output_full = moge_model.infer(input_image_for_depth_tensor_chw)
    moge_depth_hw_full = moge_output_full["depth"]
    moge_intrinsics_33_full_normalized = moge_output_full["intrinsics"]
    moge_mask_hw_full = moge_output_full["mask"]

    moge_depth_hw_full = torch.where(moge_mask_hw_full==0, torch.tensor(1000.0, device=moge_depth_hw_full.device), moge_depth_hw_full)
    moge_intrinsics_33_full_pixel = moge_intrinsics_33_full_normalized.clone()
    moge_intrinsics_33_full_pixel[0, 0] *= depth_pred_w
    moge_intrinsics_33_full_pixel[1, 1] *= depth_pred_h
    moge_intrinsics_33_full_pixel[0, 2] *= depth_pred_w
    moge_intrinsics_33_full_pixel[1, 2] *= depth_pred_h

    # Calculate scaling factor for height
    height_scale_factor = target_h / depth_pred_h
    width_scale_factor = target_w / depth_pred_w

    # Resize depth map, mask, and image tensor
    # Resizing depth: (H, W) -> (1, 1, H, W) for interpolate, then squeeze
    moge_depth_hw = F.interpolate(
        moge_depth_hw_full.unsqueeze(0).unsqueeze(0),
        size=(target_h, target_w),
        mode='bilinear',
        align_corners=False
    ).squeeze(0).squeeze(0)

    # Resizing mask: (H, W) -> (1, 1, H, W) for interpolate, then squeeze
    moge_mask_hw = F.interpolate(
        moge_mask_hw_full.unsqueeze(0).unsqueeze(0).to(torch.float32),
        size=(target_h, target_w),
        mode='nearest',  # Using nearest neighbor for binary mask
    ).squeeze(0).squeeze(0).to(torch.bool)

    # Resizing image tensor: (C, H, W) -> (1, C, H, W) for interpolate, then squeeze
    input_image_tensor_chw_target_res = F.interpolate(
        input_image_for_depth_tensor_chw.unsqueeze(0),
        size=(target_h, target_w),
        mode='bilinear',
        align_corners=False
    ).squeeze(0)

    moge_image_b1chw_float = input_image_tensor_chw_target_res.unsqueeze(0).unsqueeze(1) * 2 - 1

    moge_intrinsics_33 = moge_intrinsics_33_full_pixel.clone()
    # Adjust intrinsics for resized height
    moge_intrinsics_33[1, 1] *= height_scale_factor  # fy
    moge_intrinsics_33[1, 2] *= height_scale_factor  # cy
    moge_intrinsics_33[0, 0] *= width_scale_factor  # fx
    moge_intrinsics_33[0, 2] *= width_scale_factor  # cx

    moge_depth_b11hw = moge_depth_hw.unsqueeze(0).unsqueeze(0).unsqueeze(0)
    moge_depth_b11hw = torch.nan_to_num(moge_depth_b11hw, nan=1e4)
    moge_depth_b11hw = torch.clamp(moge_depth_b11hw, min=0, max=1e4)
    moge_mask_b11hw = moge_mask_hw.unsqueeze(0).unsqueeze(0).unsqueeze(0)
    # Prepare initial intrinsics [B, 1, 3, 3]
    moge_intrinsics_b133 = moge_intrinsics_33.unsqueeze(0).unsqueeze(0)
    initial_w2c_44 = torch.eye(4, dtype=torch.float32, device=device)
    moge_initial_w2c_b144 = initial_w2c_44.unsqueeze(0).unsqueeze(0)

    return (
        moge_image_b1chw_float,
        moge_depth_b11hw,
        moge_mask_b11hw,
        moge_initial_w2c_b144,
        moge_intrinsics_b133,
    )

def _predict_moge_depth_from_tensor(
    image_tensor_chw_0_1: torch.Tensor, # Shape (C, H_input, W_input), range [0,1]
    moge_model: MoGeModel
):
    """Handles MoGe depth prediction from an image tensor."""
    moge_output_full = moge_model.infer(image_tensor_chw_0_1)
    moge_depth_hw_full = moge_output_full["depth"]      # (moge_inf_h, moge_inf_w)
    moge_mask_hw_full = moge_output_full["mask"]        # (moge_inf_h, moge_inf_w)

    moge_depth_11hw = moge_depth_hw_full.unsqueeze(0).unsqueeze(0)
    moge_depth_11hw = torch.nan_to_num(moge_depth_11hw, nan=1e4)
    moge_depth_11hw = torch.clamp(moge_depth_11hw, min=0, max=1e4)
    moge_mask_11hw = moge_mask_hw_full.unsqueeze(0).unsqueeze(0)
    moge_depth_11hw = torch.where(moge_mask_11hw==0, torch.tensor(1000.0, device=moge_depth_11hw.device), moge_depth_11hw)

    return moge_depth_11hw, moge_mask_11hw

def demo(args):
    """Run video-to-world generation demo.

    This function handles the main video-to-world generation pipeline, including:
    - Setting up the random seed for reproducibility
    - Initializing the generation pipeline with the provided configuration
    - Processing single or multiple prompts/images/videos from input
    - Generating videos from prompts and images/videos
    - Saving the generated videos and corresponding prompts to disk

    Args:
        cfg (argparse.Namespace): Configuration namespace containing:
            - Model configuration (checkpoint paths, model settings)
            - Generation parameters (guidance, steps, dimensions)
            - Input/output settings (prompts/images/videos, save paths)
            - Performance options (model offloading settings)

    The function will save:
        - Generated MP4 video files
        - Text files containing the processed prompts

    If guardrails block the generation, a critical log message is displayed
    and the function continues to the next prompt if available.
    """
    misc.set_random_seed(args.seed)
    inference_type = "video2world"
    validate_args(args)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    if args.num_gpus > 1:
        from megatron.core import parallel_state

        from cosmos_predict1.utils import distributed

        distributed.init()
        parallel_state.initialize_model_parallel(context_parallel_size=args.num_gpus)
        process_group = parallel_state.get_context_parallel_group()

    # Initialize video2world generation model pipeline
    pipeline = Gen3cPipeline(
        inference_type=inference_type,
        checkpoint_dir=args.checkpoint_dir,
        checkpoint_name="Gen3C-Cosmos-7B",
        prompt_upsampler_dir=args.prompt_upsampler_dir,
        enable_prompt_upsampler=not args.disable_prompt_upsampler,
        offload_network=args.offload_diffusion_transformer,
        offload_tokenizer=args.offload_tokenizer,
        offload_text_encoder_model=args.offload_text_encoder_model,
        offload_prompt_upsampler=args.offload_prompt_upsampler,
        offload_guardrail_models=args.offload_guardrail_models,
        disable_guardrail=args.disable_guardrail,
        guidance=args.guidance,
        num_steps=args.num_steps,
        height=args.height,
        width=args.width,
        fps=args.fps,
        num_video_frames=121,
        seed=args.seed,
    )

    frame_buffer_max = pipeline.model.frame_buffer_max
    generator = torch.Generator(device=device).manual_seed(args.seed)
    sample_n_frames = pipeline.model.chunk_size
    moge_model = MoGeModel.from_pretrained("Ruicheng/moge-vitl").to(device)

    if args.num_gpus > 1:
        pipeline.model.net.enable_context_parallel(process_group)

    # Handle multiple prompts if prompt file is provided
    if args.batch_input_path:
        log.info(f"Reading batch inputs from path: {args.batch_input_path}")
        prompts = read_prompts_from_file(args.batch_input_path)
    else:
        # Single prompt case
        prompts = [{"prompt": args.prompt, "visual_input": args.input_image_path}]

    os.makedirs(os.path.dirname(args.video_save_folder), exist_ok=True)
    for i, input_dict in enumerate(prompts):
        current_prompt = input_dict.get("prompt", None)
        if current_prompt is None and args.disable_prompt_upsampler:
            log.critical("Prompt is missing, skipping world generation.")
            continue
        current_image_path = input_dict.get("visual_input", None)
        if current_image_path is None:
            log.critical("Visual input is missing, skipping world generation.")
            continue

        # Check input frames
        if not check_input_frames(current_image_path, 1):
            print(f"Input image {current_image_path} is not valid, skipping.")
            continue

        # load image, predict depth and initialize 3D cache
        (
            moge_image_b1chw_float,
            moge_depth_b11hw,
            moge_mask_b11hw,
            moge_initial_w2c_b144,
            moge_intrinsics_b133,
        ) = _predict_moge_depth(
            current_image_path, args.height, args.width, device, moge_model
        )

        cache = Cache3D_Buffer(
            frame_buffer_max=frame_buffer_max,
            generator=generator,
            noise_aug_strength=args.noise_aug_strength,
            input_image=moge_image_b1chw_float[:, 0].clone(), # [B, C, H, W]
            input_depth=moge_depth_b11hw[:, 0],       # [B, 1, H, W]
            # input_mask=moge_mask_b11hw[:, 0],         # [B, 1, H, W]
            input_w2c=moge_initial_w2c_b144[:, 0],  # [B, 4, 4]
            input_intrinsics=moge_intrinsics_b133[:, 0],# [B, 3, 3]
            filter_points_threshold=args.filter_points_threshold,
            foreground_masking=args.foreground_masking,
        )

        initial_cam_w2c_for_traj = moge_initial_w2c_b144[0, 0]
        initial_cam_intrinsics_for_traj = moge_intrinsics_b133[0, 0]

        # Generate camera trajectory using the new utility function
        try:
            generated_w2cs, generated_intrinsics = generate_camera_trajectory(
                trajectory_type=args.trajectory,
                initial_w2c=initial_cam_w2c_for_traj,
                initial_intrinsics=initial_cam_intrinsics_for_traj,
                num_frames=args.num_video_frames,
                movement_distance=args.movement_distance,
                camera_rotation=args.camera_rotation,
                center_depth=1.0,
                device=device.type,
            )
        except (ValueError, NotImplementedError) as e:
            log.critical(f"Failed to generate trajectory: {e}")
            continue

        log.info(f"Generating 0 - {sample_n_frames} frames")
        rendered_warp_images, rendered_warp_masks = cache.render_cache(
            generated_w2cs[:, 0:sample_n_frames],
            generated_intrinsics[:, 0:sample_n_frames],
        )

        all_rendered_warps = []
        if args.save_buffer:
            all_rendered_warps.append(rendered_warp_images.clone().cpu())

        # Generate video
        generated_output = pipeline.generate(
            prompt=current_prompt,
            image_path=current_image_path,
            negative_prompt=args.negative_prompt,
            rendered_warp_images=rendered_warp_images,
            rendered_warp_masks=rendered_warp_masks,
        )
        if generated_output is None:
            log.critical("Guardrail blocked video2world generation.")
            continue
        video, prompt = generated_output

        num_ar_iterations = (generated_w2cs.shape[1] - 1) // (sample_n_frames - 1)
        for num_iter in range(1, num_ar_iterations):
            start_frame_idx = num_iter * (sample_n_frames - 1) # Overlap by 1 frame
            end_frame_idx = start_frame_idx + sample_n_frames

            log.info(f"Generating {start_frame_idx} - {end_frame_idx} frames")

            last_frame_hwc_0_255 = torch.tensor(video[-1], device=device)
            pred_image_for_depth_chw_0_1 = last_frame_hwc_0_255.permute(2, 0, 1) / 255.0 # (C,H,W), range [0,1]

            pred_depth, pred_mask = _predict_moge_depth_from_tensor(
                pred_image_for_depth_chw_0_1, moge_model
            )

            cache.update_cache(
                new_image=pred_image_for_depth_chw_0_1.unsqueeze(0) * 2 - 1, # (B,C,H,W) range [-1,1]
                new_depth=pred_depth, #  (1,1,H,W)
                # new_mask=pred_mask,   # (1,1,H,W)
                new_w2c=generated_w2cs[:, start_frame_idx],
                new_intrinsics=generated_intrinsics[:, start_frame_idx],
            )
            current_segment_w2cs = generated_w2cs[:, start_frame_idx:end_frame_idx]
            current_segment_intrinsics = generated_intrinsics[:, start_frame_idx:end_frame_idx]
            rendered_warp_images, rendered_warp_masks = cache.render_cache(
                current_segment_w2cs,
                current_segment_intrinsics,
            )

            if args.save_buffer:
                all_rendered_warps.append(rendered_warp_images[:, 1:].clone().cpu())


            pred_image_for_depth_bcthw_minus1_1 = pred_image_for_depth_chw_0_1.unsqueeze(0).unsqueeze(2) * 2 - 1 # (B,C,T,H,W), range [-1,1]
            generated_output = pipeline.generate(
                prompt=current_prompt,
                image_path=pred_image_for_depth_bcthw_minus1_1,
                negative_prompt=args.negative_prompt,
                rendered_warp_images=rendered_warp_images,
                rendered_warp_masks=rendered_warp_masks,
            )
            video_new, prompt = generated_output
            video = np.concatenate([video, video_new[1:]], axis=0)

        # Final video processing
        final_video_to_save = video
        final_width = args.width

        if args.save_buffer and all_rendered_warps:
            squeezed_warps = [t.squeeze(0) for t in all_rendered_warps] # Each is (T_chunk, n_i, C, H, W)

            if squeezed_warps:
                n_max = max(t.shape[1] for t in squeezed_warps)

                padded_t_list = []
                for sq_t in squeezed_warps:
                    # sq_t shape: (T_chunk, n_i, C, H, W)
                    current_n_i = sq_t.shape[1]
                    padding_needed_dim1 = n_max - current_n_i

                    pad_spec = (0,0, # W
                                0,0, # H
                                0,0, # C
                                0,padding_needed_dim1, # n_i
                                0,0) # T_chunk
                    padded_t = F.pad(sq_t, pad_spec, mode='constant', value=-1.0)
                    padded_t_list.append(padded_t)

                full_rendered_warp_tensor = torch.cat(padded_t_list, dim=0)

                T_total, _, C_dim, H_dim, W_dim = full_rendered_warp_tensor.shape
                buffer_video_TCHnW = full_rendered_warp_tensor.permute(0, 2, 3, 1, 4)
                buffer_video_TCHWstacked = buffer_video_TCHnW.contiguous().view(T_total, C_dim, H_dim, n_max * W_dim)
                buffer_video_TCHWstacked = (buffer_video_TCHWstacked * 0.5 + 0.5) * 255.0
                buffer_numpy_TCHWstacked = buffer_video_TCHWstacked.cpu().numpy().astype(np.uint8)
                buffer_numpy_THWC = np.transpose(buffer_numpy_TCHWstacked, (0, 2, 3, 1))

                final_video_to_save = np.concatenate([buffer_numpy_THWC, final_video_to_save], axis=2)
                final_width = args.width * (1 + n_max)
                log.info(f"Concatenating video with {n_max} warp buffers. Final video width will be {final_width}")
            else:
                log.info("No warp buffers to save.")


        video_save_path = os.path.join(
            args.video_save_folder,
            f"{i if args.batch_input_path else args.video_save_name}.mp4"
        )

        os.makedirs(os.path.dirname(video_save_path), exist_ok=True)

        # Save video
        save_video(
            video=final_video_to_save,
            fps=args.fps,
            H=args.height,
            W=final_width,
            video_save_quality=5,
            video_save_path=video_save_path,
        )
        log.info(f"Saved video to {video_save_path}")

    # clean up properly
    if args.num_gpus > 1:
        parallel_state.destroy_model_parallel()
        import torch.distributed as dist

        dist.destroy_process_group()


if __name__ == "__main__":
    args = parse_arguments()
    if args.prompt is None:
        args.prompt = ""
    args.disable_guardrail = True
    args.disable_prompt_upsampler = True
    demo(args)