Spaces:
Build error
Build error
File size: 20,380 Bytes
b6af722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import cv2
from moge.model.v1 import MoGeModel
import torch
import numpy as np
from cosmos_predict1.diffusion.inference.inference_utils import (
add_common_arguments,
check_input_frames,
validate_args,
)
from cosmos_predict1.diffusion.inference.gen3c_pipeline import Gen3cPipeline
from cosmos_predict1.utils import log, misc
from cosmos_predict1.utils.io import read_prompts_from_file, save_video
from cosmos_predict1.diffusion.inference.cache_3d import Cache3D_Buffer
from cosmos_predict1.diffusion.inference.camera_utils import generate_camera_trajectory
import torch.nn.functional as F
torch.enable_grad(False)
def create_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser(description="Video to world generation demo script")
# Add common arguments
add_common_arguments(parser)
parser.add_argument(
"--prompt_upsampler_dir",
type=str,
default="Pixtral-12B",
help="Prompt upsampler weights directory relative to checkpoint_dir",
) # TODO: do we need this?
parser.add_argument(
"--input_image_path",
type=str,
help="Input image path for generating a single video",
)
parser.add_argument(
"--trajectory",
type=str,
choices=[
"left",
"right",
"up",
"down",
"zoom_in",
"zoom_out",
"clockwise",
"counterclockwise",
"none",
],
default="left",
help="Select a trajectory type from the available options (default: original)",
)
parser.add_argument(
"--camera_rotation",
type=str,
choices=["center_facing", "no_rotation", "trajectory_aligned"],
default="center_facing",
help="Controls camera rotation during movement: center_facing (rotate to look at center), no_rotation (keep orientation), or trajectory_aligned (rotate in the direction of movement)",
)
parser.add_argument(
"--movement_distance",
type=float,
default=0.3,
help="Distance of the camera from the center of the scene",
)
parser.add_argument(
"--noise_aug_strength",
type=float,
default=0.0,
help="Strength of noise augmentation on warped frames",
)
parser.add_argument(
"--save_buffer",
action="store_true",
help="If set, save the warped images (buffer) side by side with the output video.",
)
parser.add_argument(
"--filter_points_threshold",
type=float,
default=0.05,
help="If set, filter the points continuity of the warped images.",
)
parser.add_argument(
"--foreground_masking",
action="store_true",
help="If set, use foreground masking for the warped images.",
)
return parser
def parse_arguments() -> argparse.Namespace:
parser = create_parser()
return parser.parse_args()
def validate_args(args):
assert args.num_video_frames is not None, "num_video_frames must be provided"
assert (args.num_video_frames - 1) % 120 == 0, "num_video_frames must be 121, 241, 361, ... (N*120+1)"
def _predict_moge_depth(current_image_path: str | np.ndarray,
target_h: int, target_w: int,
device: torch.device, moge_model: MoGeModel):
"""Handles MoGe depth prediction for a single image.
If the image is directly provided as a NumPy array, it should have shape [H, W, C],
where the channels are RGB and the pixel values are in [0..255].
"""
if isinstance(current_image_path, str):
input_image_bgr = cv2.imread(current_image_path)
if input_image_bgr is None:
raise FileNotFoundError(f"Input image not found: {current_image_path}")
input_image_rgb = cv2.cvtColor(input_image_bgr, cv2.COLOR_BGR2RGB)
else:
input_image_rgb = current_image_path
del current_image_path
depth_pred_h, depth_pred_w = 720, 1280
input_image_for_depth_resized = cv2.resize(input_image_rgb, (depth_pred_w, depth_pred_h))
input_image_for_depth_tensor_chw = torch.tensor(input_image_for_depth_resized / 255.0, dtype=torch.float32, device=device).permute(2, 0, 1)
moge_output_full = moge_model.infer(input_image_for_depth_tensor_chw)
moge_depth_hw_full = moge_output_full["depth"]
moge_intrinsics_33_full_normalized = moge_output_full["intrinsics"]
moge_mask_hw_full = moge_output_full["mask"]
moge_depth_hw_full = torch.where(moge_mask_hw_full==0, torch.tensor(1000.0, device=moge_depth_hw_full.device), moge_depth_hw_full)
moge_intrinsics_33_full_pixel = moge_intrinsics_33_full_normalized.clone()
moge_intrinsics_33_full_pixel[0, 0] *= depth_pred_w
moge_intrinsics_33_full_pixel[1, 1] *= depth_pred_h
moge_intrinsics_33_full_pixel[0, 2] *= depth_pred_w
moge_intrinsics_33_full_pixel[1, 2] *= depth_pred_h
# Calculate scaling factor for height
height_scale_factor = target_h / depth_pred_h
width_scale_factor = target_w / depth_pred_w
# Resize depth map, mask, and image tensor
# Resizing depth: (H, W) -> (1, 1, H, W) for interpolate, then squeeze
moge_depth_hw = F.interpolate(
moge_depth_hw_full.unsqueeze(0).unsqueeze(0),
size=(target_h, target_w),
mode='bilinear',
align_corners=False
).squeeze(0).squeeze(0)
# Resizing mask: (H, W) -> (1, 1, H, W) for interpolate, then squeeze
moge_mask_hw = F.interpolate(
moge_mask_hw_full.unsqueeze(0).unsqueeze(0).to(torch.float32),
size=(target_h, target_w),
mode='nearest', # Using nearest neighbor for binary mask
).squeeze(0).squeeze(0).to(torch.bool)
# Resizing image tensor: (C, H, W) -> (1, C, H, W) for interpolate, then squeeze
input_image_tensor_chw_target_res = F.interpolate(
input_image_for_depth_tensor_chw.unsqueeze(0),
size=(target_h, target_w),
mode='bilinear',
align_corners=False
).squeeze(0)
moge_image_b1chw_float = input_image_tensor_chw_target_res.unsqueeze(0).unsqueeze(1) * 2 - 1
moge_intrinsics_33 = moge_intrinsics_33_full_pixel.clone()
# Adjust intrinsics for resized height
moge_intrinsics_33[1, 1] *= height_scale_factor # fy
moge_intrinsics_33[1, 2] *= height_scale_factor # cy
moge_intrinsics_33[0, 0] *= width_scale_factor # fx
moge_intrinsics_33[0, 2] *= width_scale_factor # cx
moge_depth_b11hw = moge_depth_hw.unsqueeze(0).unsqueeze(0).unsqueeze(0)
moge_depth_b11hw = torch.nan_to_num(moge_depth_b11hw, nan=1e4)
moge_depth_b11hw = torch.clamp(moge_depth_b11hw, min=0, max=1e4)
moge_mask_b11hw = moge_mask_hw.unsqueeze(0).unsqueeze(0).unsqueeze(0)
# Prepare initial intrinsics [B, 1, 3, 3]
moge_intrinsics_b133 = moge_intrinsics_33.unsqueeze(0).unsqueeze(0)
initial_w2c_44 = torch.eye(4, dtype=torch.float32, device=device)
moge_initial_w2c_b144 = initial_w2c_44.unsqueeze(0).unsqueeze(0)
return (
moge_image_b1chw_float,
moge_depth_b11hw,
moge_mask_b11hw,
moge_initial_w2c_b144,
moge_intrinsics_b133,
)
def _predict_moge_depth_from_tensor(
image_tensor_chw_0_1: torch.Tensor, # Shape (C, H_input, W_input), range [0,1]
moge_model: MoGeModel
):
"""Handles MoGe depth prediction from an image tensor."""
moge_output_full = moge_model.infer(image_tensor_chw_0_1)
moge_depth_hw_full = moge_output_full["depth"] # (moge_inf_h, moge_inf_w)
moge_mask_hw_full = moge_output_full["mask"] # (moge_inf_h, moge_inf_w)
moge_depth_11hw = moge_depth_hw_full.unsqueeze(0).unsqueeze(0)
moge_depth_11hw = torch.nan_to_num(moge_depth_11hw, nan=1e4)
moge_depth_11hw = torch.clamp(moge_depth_11hw, min=0, max=1e4)
moge_mask_11hw = moge_mask_hw_full.unsqueeze(0).unsqueeze(0)
moge_depth_11hw = torch.where(moge_mask_11hw==0, torch.tensor(1000.0, device=moge_depth_11hw.device), moge_depth_11hw)
return moge_depth_11hw, moge_mask_11hw
def demo(args):
"""Run video-to-world generation demo.
This function handles the main video-to-world generation pipeline, including:
- Setting up the random seed for reproducibility
- Initializing the generation pipeline with the provided configuration
- Processing single or multiple prompts/images/videos from input
- Generating videos from prompts and images/videos
- Saving the generated videos and corresponding prompts to disk
Args:
cfg (argparse.Namespace): Configuration namespace containing:
- Model configuration (checkpoint paths, model settings)
- Generation parameters (guidance, steps, dimensions)
- Input/output settings (prompts/images/videos, save paths)
- Performance options (model offloading settings)
The function will save:
- Generated MP4 video files
- Text files containing the processed prompts
If guardrails block the generation, a critical log message is displayed
and the function continues to the next prompt if available.
"""
misc.set_random_seed(args.seed)
inference_type = "video2world"
validate_args(args)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if args.num_gpus > 1:
from megatron.core import parallel_state
from cosmos_predict1.utils import distributed
distributed.init()
parallel_state.initialize_model_parallel(context_parallel_size=args.num_gpus)
process_group = parallel_state.get_context_parallel_group()
# Initialize video2world generation model pipeline
pipeline = Gen3cPipeline(
inference_type=inference_type,
checkpoint_dir=args.checkpoint_dir,
checkpoint_name="Gen3C-Cosmos-7B",
prompt_upsampler_dir=args.prompt_upsampler_dir,
enable_prompt_upsampler=not args.disable_prompt_upsampler,
offload_network=args.offload_diffusion_transformer,
offload_tokenizer=args.offload_tokenizer,
offload_text_encoder_model=args.offload_text_encoder_model,
offload_prompt_upsampler=args.offload_prompt_upsampler,
offload_guardrail_models=args.offload_guardrail_models,
disable_guardrail=args.disable_guardrail,
guidance=args.guidance,
num_steps=args.num_steps,
height=args.height,
width=args.width,
fps=args.fps,
num_video_frames=121,
seed=args.seed,
)
frame_buffer_max = pipeline.model.frame_buffer_max
generator = torch.Generator(device=device).manual_seed(args.seed)
sample_n_frames = pipeline.model.chunk_size
moge_model = MoGeModel.from_pretrained("Ruicheng/moge-vitl").to(device)
if args.num_gpus > 1:
pipeline.model.net.enable_context_parallel(process_group)
# Handle multiple prompts if prompt file is provided
if args.batch_input_path:
log.info(f"Reading batch inputs from path: {args.batch_input_path}")
prompts = read_prompts_from_file(args.batch_input_path)
else:
# Single prompt case
prompts = [{"prompt": args.prompt, "visual_input": args.input_image_path}]
os.makedirs(os.path.dirname(args.video_save_folder), exist_ok=True)
for i, input_dict in enumerate(prompts):
current_prompt = input_dict.get("prompt", None)
if current_prompt is None and args.disable_prompt_upsampler:
log.critical("Prompt is missing, skipping world generation.")
continue
current_image_path = input_dict.get("visual_input", None)
if current_image_path is None:
log.critical("Visual input is missing, skipping world generation.")
continue
# Check input frames
if not check_input_frames(current_image_path, 1):
print(f"Input image {current_image_path} is not valid, skipping.")
continue
# load image, predict depth and initialize 3D cache
(
moge_image_b1chw_float,
moge_depth_b11hw,
moge_mask_b11hw,
moge_initial_w2c_b144,
moge_intrinsics_b133,
) = _predict_moge_depth(
current_image_path, args.height, args.width, device, moge_model
)
cache = Cache3D_Buffer(
frame_buffer_max=frame_buffer_max,
generator=generator,
noise_aug_strength=args.noise_aug_strength,
input_image=moge_image_b1chw_float[:, 0].clone(), # [B, C, H, W]
input_depth=moge_depth_b11hw[:, 0], # [B, 1, H, W]
# input_mask=moge_mask_b11hw[:, 0], # [B, 1, H, W]
input_w2c=moge_initial_w2c_b144[:, 0], # [B, 4, 4]
input_intrinsics=moge_intrinsics_b133[:, 0],# [B, 3, 3]
filter_points_threshold=args.filter_points_threshold,
foreground_masking=args.foreground_masking,
)
initial_cam_w2c_for_traj = moge_initial_w2c_b144[0, 0]
initial_cam_intrinsics_for_traj = moge_intrinsics_b133[0, 0]
# Generate camera trajectory using the new utility function
try:
generated_w2cs, generated_intrinsics = generate_camera_trajectory(
trajectory_type=args.trajectory,
initial_w2c=initial_cam_w2c_for_traj,
initial_intrinsics=initial_cam_intrinsics_for_traj,
num_frames=args.num_video_frames,
movement_distance=args.movement_distance,
camera_rotation=args.camera_rotation,
center_depth=1.0,
device=device.type,
)
except (ValueError, NotImplementedError) as e:
log.critical(f"Failed to generate trajectory: {e}")
continue
log.info(f"Generating 0 - {sample_n_frames} frames")
rendered_warp_images, rendered_warp_masks = cache.render_cache(
generated_w2cs[:, 0:sample_n_frames],
generated_intrinsics[:, 0:sample_n_frames],
)
all_rendered_warps = []
if args.save_buffer:
all_rendered_warps.append(rendered_warp_images.clone().cpu())
# Generate video
generated_output = pipeline.generate(
prompt=current_prompt,
image_path=current_image_path,
negative_prompt=args.negative_prompt,
rendered_warp_images=rendered_warp_images,
rendered_warp_masks=rendered_warp_masks,
)
if generated_output is None:
log.critical("Guardrail blocked video2world generation.")
continue
video, prompt = generated_output
num_ar_iterations = (generated_w2cs.shape[1] - 1) // (sample_n_frames - 1)
for num_iter in range(1, num_ar_iterations):
start_frame_idx = num_iter * (sample_n_frames - 1) # Overlap by 1 frame
end_frame_idx = start_frame_idx + sample_n_frames
log.info(f"Generating {start_frame_idx} - {end_frame_idx} frames")
last_frame_hwc_0_255 = torch.tensor(video[-1], device=device)
pred_image_for_depth_chw_0_1 = last_frame_hwc_0_255.permute(2, 0, 1) / 255.0 # (C,H,W), range [0,1]
pred_depth, pred_mask = _predict_moge_depth_from_tensor(
pred_image_for_depth_chw_0_1, moge_model
)
cache.update_cache(
new_image=pred_image_for_depth_chw_0_1.unsqueeze(0) * 2 - 1, # (B,C,H,W) range [-1,1]
new_depth=pred_depth, # (1,1,H,W)
# new_mask=pred_mask, # (1,1,H,W)
new_w2c=generated_w2cs[:, start_frame_idx],
new_intrinsics=generated_intrinsics[:, start_frame_idx],
)
current_segment_w2cs = generated_w2cs[:, start_frame_idx:end_frame_idx]
current_segment_intrinsics = generated_intrinsics[:, start_frame_idx:end_frame_idx]
rendered_warp_images, rendered_warp_masks = cache.render_cache(
current_segment_w2cs,
current_segment_intrinsics,
)
if args.save_buffer:
all_rendered_warps.append(rendered_warp_images[:, 1:].clone().cpu())
pred_image_for_depth_bcthw_minus1_1 = pred_image_for_depth_chw_0_1.unsqueeze(0).unsqueeze(2) * 2 - 1 # (B,C,T,H,W), range [-1,1]
generated_output = pipeline.generate(
prompt=current_prompt,
image_path=pred_image_for_depth_bcthw_minus1_1,
negative_prompt=args.negative_prompt,
rendered_warp_images=rendered_warp_images,
rendered_warp_masks=rendered_warp_masks,
)
video_new, prompt = generated_output
video = np.concatenate([video, video_new[1:]], axis=0)
# Final video processing
final_video_to_save = video
final_width = args.width
if args.save_buffer and all_rendered_warps:
squeezed_warps = [t.squeeze(0) for t in all_rendered_warps] # Each is (T_chunk, n_i, C, H, W)
if squeezed_warps:
n_max = max(t.shape[1] for t in squeezed_warps)
padded_t_list = []
for sq_t in squeezed_warps:
# sq_t shape: (T_chunk, n_i, C, H, W)
current_n_i = sq_t.shape[1]
padding_needed_dim1 = n_max - current_n_i
pad_spec = (0,0, # W
0,0, # H
0,0, # C
0,padding_needed_dim1, # n_i
0,0) # T_chunk
padded_t = F.pad(sq_t, pad_spec, mode='constant', value=-1.0)
padded_t_list.append(padded_t)
full_rendered_warp_tensor = torch.cat(padded_t_list, dim=0)
T_total, _, C_dim, H_dim, W_dim = full_rendered_warp_tensor.shape
buffer_video_TCHnW = full_rendered_warp_tensor.permute(0, 2, 3, 1, 4)
buffer_video_TCHWstacked = buffer_video_TCHnW.contiguous().view(T_total, C_dim, H_dim, n_max * W_dim)
buffer_video_TCHWstacked = (buffer_video_TCHWstacked * 0.5 + 0.5) * 255.0
buffer_numpy_TCHWstacked = buffer_video_TCHWstacked.cpu().numpy().astype(np.uint8)
buffer_numpy_THWC = np.transpose(buffer_numpy_TCHWstacked, (0, 2, 3, 1))
final_video_to_save = np.concatenate([buffer_numpy_THWC, final_video_to_save], axis=2)
final_width = args.width * (1 + n_max)
log.info(f"Concatenating video with {n_max} warp buffers. Final video width will be {final_width}")
else:
log.info("No warp buffers to save.")
video_save_path = os.path.join(
args.video_save_folder,
f"{i if args.batch_input_path else args.video_save_name}.mp4"
)
os.makedirs(os.path.dirname(video_save_path), exist_ok=True)
# Save video
save_video(
video=final_video_to_save,
fps=args.fps,
H=args.height,
W=final_width,
video_save_quality=5,
video_save_path=video_save_path,
)
log.info(f"Saved video to {video_save_path}")
# clean up properly
if args.num_gpus > 1:
parallel_state.destroy_model_parallel()
import torch.distributed as dist
dist.destroy_process_group()
if __name__ == "__main__":
args = parse_arguments()
if args.prompt is None:
args.prompt = ""
args.disable_guardrail = True
args.disable_prompt_upsampler = True
demo(args)
|