File size: 9,986 Bytes
b6af722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os

import torch

from cosmos_predict1.diffusion.inference.inference_utils import (
    add_common_arguments,
    check_input_frames,
    get_input_sizes,
    remove_argument,
    validate_args,
)
from cosmos_predict1.diffusion.inference.world_generation_pipeline import (
    DiffusionVideo2WorldMultiviewGenerationPipeline,
)
from cosmos_predict1.utils import log, misc
from cosmos_predict1.utils.io import read_prompts_from_file, save_video

torch.enable_grad(False)


def parse_arguments() -> argparse.Namespace:
    parser = argparse.ArgumentParser(description="Video to world generation demo script")
    # Add common arguments
    add_common_arguments(parser)
    remove_argument(parser, "width")
    remove_argument(parser, "height")
    remove_argument(parser, "num_video_frames")
    parser.add_argument("--height", type=int, default=480, help="Height of video to sample")
    parser.add_argument("--width", type=int, default=848, help="Width of video to sample")

    parser.add_argument(
        "--num_video_frames",
        type=int,
        default=57,
        choices=[57],
        help="Number of video frames to sample, this is per-camera frame number.",
    )
    # Add video2world specific arguments
    parser.add_argument(
        "--diffusion_transformer_dir",
        type=str,
        default="Cosmos-Predict1-7B-Video2World-Sample-AV-Multiview",
        help="DiT model weights directory name relative to checkpoint_dir",
        choices=[
            "Cosmos-Predict1-7B-Video2World-Sample-AV-Multiview",
        ],
    )
    parser.add_argument(
        "--prompt_left",
        type=str,
        default="The video is captured from a camera mounted on a car. The camera is facing to the left. ",
        help="Text prompt for generating left camera view video",
    )
    parser.add_argument(
        "--prompt_right",
        type=str,
        default="The video is captured from a camera mounted on a car. The camera is facing to the right.",
        help="Text prompt for generating right camera view video",
    )

    parser.add_argument(
        "--prompt_back",
        type=str,
        default="The video is captured from a camera mounted on a car. The camera is facing backwards.",
        help="Text prompt for generating rear camera view video",
    )
    parser.add_argument(
        "--prompt_back_left",
        type=str,
        default="The video is captured from a camera mounted on a car. The camera is facing the rear left side.",
        help="Text prompt for generating left camera view video",
    )
    parser.add_argument(
        "--prompt_back_right",
        type=str,
        default="The video is captured from a camera mounted on a car. The camera is facing the rear right side.",
        help="Text prompt for generating right camera view video",
    )
    parser.add_argument(
        "--frame_repeat_negative_condition",
        type=float,
        default=10.0,
        help="frame_repeat number to be used as negative condition",
    )
    parser.add_argument(
        "--input_image_or_video_path",
        type=str,
        help="Input video/image path for generating a single video",
    )
    parser.add_argument(
        "--num_input_frames",
        type=int,
        default=1,
        help="Number of input frames for video2world prediction",
        choices=[1, 9],
    )

    return parser.parse_args()


def demo(args):
    """Run multi-view video-to-world generation demo.

    This function handles the main video-to-world generation pipeline, including:
    - Setting up the random seed for reproducibility
    - Initializing the generation pipeline with the provided configuration
    - Processing single or multiple prompts/images/videos from input
    - Generating videos from prompts and images/videos
    - Saving the generated videos and corresponding prompts to disk

    Args:
        cfg (argparse.Namespace): Configuration namespace containing:
            - Model configuration (checkpoint paths, model settings)
            - Generation parameters (guidance, steps, dimensions)
            - Input/output settings (prompts/images/videos, save paths)
            - Performance options (model offloading settings)

    The function will save:
        - Generated MP4 video files
        - Text files containing the processed prompts

    If guardrails block the generation, a critical log message is displayed
    and the function continues to the next prompt if available.
    """
    misc.set_random_seed(args.seed)
    inference_type = "video2world"
    validate_args(args, inference_type)

    if args.num_gpus > 1:
        from megatron.core import parallel_state

        from cosmos_predict1.utils import distributed

        distributed.init()
        parallel_state.initialize_model_parallel(context_parallel_size=args.num_gpus)
        process_group = parallel_state.get_context_parallel_group()

    # Initialize video2world generation model pipeline
    pipeline = DiffusionVideo2WorldMultiviewGenerationPipeline(
        inference_type=inference_type,
        checkpoint_dir=args.checkpoint_dir,
        checkpoint_name=args.diffusion_transformer_dir,
        offload_network=args.offload_diffusion_transformer,
        offload_tokenizer=args.offload_tokenizer,
        offload_text_encoder_model=args.offload_text_encoder_model,
        offload_guardrail_models=args.offload_guardrail_models,
        disable_guardrail=args.disable_guardrail,
        guidance=args.guidance,
        num_steps=args.num_steps,
        height=args.height,
        width=args.width,
        fps=args.fps,
        num_video_frames=args.num_video_frames,
        frame_repeat_negative_condition=args.frame_repeat_negative_condition,
        seed=args.seed,
        num_input_frames=args.num_input_frames,
    )

    if args.num_gpus > 1:
        pipeline.model.net.enable_context_parallel(process_group)

    # Handle multiple prompts if prompt file is provided
    if args.batch_input_path:
        log.info(f"Reading batch inputs from path: {args.batch_input_path}")
        prompts = read_prompts_from_file(args.batch_input_path)
    else:
        # Single prompt case
        prompts = [
            {
                "prompt": args.prompt,
                "prompt_left": args.prompt_left,
                "prompt_right": args.prompt_right,
                "prompt_back": args.prompt_back,
                "prompt_back_left": args.prompt_back_left,
                "prompt_back_right": args.prompt_back_right,
                "visual_input": args.input_image_or_video_path,
            }
        ]

    os.makedirs(args.video_save_folder, exist_ok=True)
    for i, input_dict in enumerate(prompts):
        current_image_or_video_path = input_dict.pop("visual_input", None)
        if current_image_or_video_path is None:
            log.critical("Visual input is missing, skipping world generation.")
            continue
        current_prompt = input_dict

        # Check input frames
        if not check_input_frames(current_image_or_video_path, args.num_input_frames):
            continue
        log.warning("Visual input is provided, overriding --height and --width arguments.")
        args.height, args.width = get_input_sizes(current_image_or_video_path)

        # Generate video
        generated_output = pipeline.generate(
            prompt=current_prompt,
            image_or_video_path=current_image_or_video_path,
        )
        if generated_output is None:
            log.critical("Guardrail blocked video2world generation.")
            continue
        [video_grid, video], prompt = generated_output

        if args.batch_input_path:
            video_save_path = os.path.join(args.video_save_folder, f"{i}.mp4")
            video_grid_save_path = os.path.join(args.video_save_folder, f"{i}_grid.mp4")
            prompt_save_path = os.path.join(args.video_save_folder, f"{i}.txt")
        else:
            video_save_path = os.path.join(args.video_save_folder, f"{args.video_save_name}.mp4")
            video_grid_save_path = os.path.join(args.video_save_folder, f"{args.video_save_name}_grid.mp4")
            prompt_save_path = os.path.join(args.video_save_folder, f"{args.video_save_name}.txt")

        # Save video
        save_video(
            video=video,
            fps=args.fps,
            H=args.height,
            W=args.width,
            video_save_quality=10,
            video_save_path=video_save_path,
        )
        save_video(
            video=video_grid,
            fps=args.fps,
            H=args.height * 2,
            W=args.width * 3,
            video_save_quality=5,
            video_save_path=video_grid_save_path,
        )
        # Save prompt to text file alongside video
        with open(prompt_save_path, "wb") as f:
            for key, value in prompt.items():
                f.write(value.encode("utf-8"))
                f.write("\n".encode("utf-8"))

        log.info(f"Saved video to {video_save_path}")
        log.info(f"Saved prompt to {prompt_save_path}")

    # clean up properly
    if args.num_gpus > 1:
        parallel_state.destroy_model_parallel()
        import torch.distributed as dist

        dist.destroy_process_group()


if __name__ == "__main__":
    args = parse_arguments()
    demo(args)