Spaces:
Build error
Build error
File size: 9,565 Bytes
b6af722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
CUDA_VISIBLE_DEVICES=1 python3 -m cosmos_predict1.diffusion.inference.world_interpolator \
--checkpoint_dir checkpoints \
--diffusion_transformer_dir Cosmos-Predict1-7B-WorldInterpolator \
--input_image_or_video_path assets/diffusion/interpolation_example.mp4 \
--num_input_frames 1 \
--offload_prompt_upsampler \
--video_save_name diffusion-world-interpolator-7b \
--num_video_frames 10 \
--num_frame_pairs 2
"""
import argparse
import os
import torch
from cosmos_predict1.diffusion.inference.inference_utils import add_common_arguments, check_input_frames, validate_args
from cosmos_predict1.diffusion.inference.world_generation_pipeline import DiffusionWorldInterpolatorGenerationPipeline
from cosmos_predict1.utils import log, misc
from cosmos_predict1.utils.io import read_prompts_from_file, save_video
# from cosmos_predict1.utils.visualize.video import save_img_or_video
torch.enable_grad(False)
def parse_arguments() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Video to world generation demo script")
# Add common arguments
add_common_arguments(parser)
# Add video2world specific arguments
parser.add_argument(
"--diffusion_transformer_dir",
type=str,
default="Cosmos-Predict1-7B-WorldInterpolator",
help="DiT model weights directory name relative to checkpoint_dir",
choices=[
"Cosmos-Predict1-7B-WorldInterpolator",
"Cosmos-Predict1-7B-WorldInterpolator_post-trained",
],
)
parser.add_argument(
"--prompt_upsampler_dir",
type=str,
default="Pixtral-12B",
help="Prompt upsampler weights directory relative to checkpoint_dir",
)
parser.add_argument(
"--input_image_or_video_path",
type=str,
help="Input video/image path for generating a single video",
)
parser.add_argument(
"--num_input_frames",
type=int,
default=2,
help="The minimum number of input frames for world_interpolator predictions.",
)
# parser.add_argument("--num_video_frames", type=int, default=118, help="numer of video frames to sample")
parser.add_argument("--pixel_chunk_duration", type=int, default=121, help="pixel chunk duration")
parser.add_argument(
"--frame_stride",
type=int,
default=1,
help="Specifies the gap between frames used for interpolation. A step_size of 1 means consecutive frame "
"pairs are treated as inputs (e.g., (x0, x1), (x1, x2)), while a step_size of 2 pairs frames with one "
"frame in between (e.g., (x0, x2), (x2, x4) are treated as input at a time). Increasing this value "
"results in interpolation over a larger temporal range. Default is 1.",
)
parser.add_argument(
"--frame_index_start",
type=int,
default=0,
help="Specifies the gap between frames used for interpolation. A step_size of 1 means consecutive frame "
"pairs are treated as inputs (e.g., (x0, x1), (x1, x2)), while a step_size of 2 pairs frames with one "
"frame in between (e.g., (x0, x2), (x2, x4) are treated as input at a time). Increasing this value "
"results in interpolation over a larger temporal range. Default is 1.",
)
parser.add_argument(
"--num_frame_pairs",
type=int,
default=None,
help="Limits the number of unique frame pairs processed for interpolation. By default (None), the interpolator "
"runs on all possible pairs extracted from the input video with the given step_size. If set to 1, only the first "
"frame pair is processed (e.g., (x0, x1) for step_size=1, (x0, x2) for step_size=2). Higher values allow processing more "
"pairs up to the maximum possible with the given step_size.",
)
return parser.parse_args()
def demo(args):
"""Run world-interpolator generation demo.
This function handles the main video-to-world generation pipeline, including:
- Setting up the random seed for reproducibility
- Initializing the generation pipeline with the provided configuration
- Processing single or multiple prompts/images/videos from input
- Generating videos from prompts and images/videos
- Saving the generated videos and corresponding prompts to disk
Args:
cfg (argparse.Namespace): Configuration namespace containing:
- Model configuration (checkpoint paths, model settings)
- Generation parameters (guidance, steps, dimensions)
- Input/output settings (prompts/images/videos, save paths)
- Performance options (model offloading settings)
The function will save:
- Generated MP4 video files
- Text files containing the processed prompts
If guardrails block the generation, a critical log message is displayed
and the function continues to the next prompt if available.
"""
# import ipdb; ipdb.set_trace()
misc.set_random_seed(args.seed)
inference_type = "world_interpolator"
validate_args(args, inference_type)
if args.num_gpus > 1:
from megatron.core import parallel_state
from cosmos_predict1.utils import distributed
distributed.init()
parallel_state.initialize_model_parallel(context_parallel_size=args.num_gpus)
process_group = parallel_state.get_context_parallel_group()
# Initialize video_interpolator generation model pipeline
pipeline = DiffusionWorldInterpolatorGenerationPipeline(
inference_type=inference_type,
checkpoint_dir=args.checkpoint_dir,
checkpoint_name=args.diffusion_transformer_dir,
prompt_upsampler_dir=args.prompt_upsampler_dir,
enable_prompt_upsampler=not args.disable_prompt_upsampler,
offload_network=args.offload_diffusion_transformer,
offload_tokenizer=args.offload_tokenizer,
offload_text_encoder_model=args.offload_text_encoder_model,
offload_prompt_upsampler=args.offload_prompt_upsampler,
offload_guardrail_models=args.offload_guardrail_models,
disable_guardrail=args.disable_guardrail,
num_steps=args.num_steps,
height=args.height,
width=args.width,
fps=args.fps,
num_video_frames=args.num_video_frames,
num_input_frames=args.num_input_frames,
num_frame_pairs=args.num_frame_pairs,
frame_stride=args.frame_stride,
)
if args.num_gpus > 1:
pipeline.model.net.enable_context_parallel(process_group)
# Handle multiple prompts if prompt file is provided
if args.batch_input_path:
log.info(f"Reading batch inputs from path: {args.batch_input_path}")
prompts = read_prompts_from_file(args.batch_input_path)
else:
# Single prompt case
prompts = [{"prompt": args.prompt, "visual_input": args.input_image_or_video_path}]
os.makedirs(args.video_save_folder, exist_ok=True)
for i, input_dict in enumerate(prompts):
current_prompt = input_dict.get("prompt", None)
if current_prompt is None and args.disable_prompt_upsampler:
log.critical("Prompt is missing, skipping world generation.")
continue
current_image_or_video_path = input_dict.get("visual_input", None)
if current_image_or_video_path is None:
log.critical("Visual input is missing, skipping world generation.")
continue
# Check input frames
if not check_input_frames(current_image_or_video_path, args.num_input_frames):
continue
# Generate video
generated_output = pipeline.generate(
prompt=current_prompt,
image_or_video_path=current_image_or_video_path,
negative_prompt=args.negative_prompt,
)
if generated_output is None:
log.critical("Guardrail blocked video2world generation.")
continue
video, prompt = generated_output
# Save video
video_save_path = os.path.join(args.video_save_folder, args.video_save_name + ".mp4")
prompt_save_path = os.path.join(args.video_save_folder, args.video_save_name + ".txt")
save_video(
video=video,
fps=args.fps,
H=args.height,
W=args.width,
video_save_quality=5,
video_save_path=video_save_path,
)
with open(prompt_save_path, "w") as f:
f.write(prompt)
log.info(f"Saved video to {video_save_path}")
log.info(f"Saved prompt to {prompt_save_path}")
# clean up properly
if args.num_gpus > 1:
parallel_state.destroy_model_parallel()
import torch.distributed as dist
dist.destroy_process_group()
if __name__ == "__main__":
args = parse_arguments()
demo(args)
|