File size: 12,426 Bytes
b6af722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional

import torch
from megatron.core import parallel_state
from torch import Tensor

from cosmos_predict1.diffusion.conditioner import VideoExtendCondition
from cosmos_predict1.diffusion.model.model_t2w import DiffusionT2WModel, broadcast_condition
from cosmos_predict1.diffusion.module.parallel import cat_outputs_cp, split_inputs_cp
from cosmos_predict1.utils import log, misc


class DiffusionV2WModel(DiffusionT2WModel):
    def __init__(self, config):
        super().__init__(config)

    def add_condition_video_indicator_and_video_input_mask(
        self, latent_state: torch.Tensor, condition: VideoExtendCondition, num_condition_t: Optional[int] = None
    ) -> VideoExtendCondition:
        """Adds conditioning masks to VideoExtendCondition object.

        Creates binary indicators and input masks for conditional video generation.

        Args:
            latent_state: Input latent tensor (B,C,T,H,W)
            condition: VideoExtendCondition object to update
            num_condition_t: Number of frames to condition on

        Returns:
            Updated VideoExtendCondition with added masks:
            - condition_video_indicator: Binary tensor marking condition regions
            - condition_video_input_mask: Input mask for network
            - gt_latent: Ground truth latent tensor
        """
        T = latent_state.shape[2]
        latent_dtype = latent_state.dtype
        condition_video_indicator = torch.zeros(1, 1, T, 1, 1, device=latent_state.device).type(
            latent_dtype
        )  # 1 for condition region

        # Only in inference to decide the condition region
        assert num_condition_t is not None, "num_condition_t should be provided"
        assert num_condition_t <= T, f"num_condition_t should be less than T, get {num_condition_t}, {T}"
        log.debug(
            f"condition_location first_n, num_condition_t {num_condition_t}, condition.video_cond_bool {condition.video_cond_bool}"
        )
        condition_video_indicator[:, :, :num_condition_t] += 1.0

        condition.gt_latent = latent_state
        condition.condition_video_indicator = condition_video_indicator

        B, C, T, H, W = latent_state.shape
        # Create additional input_mask channel, this will be concatenated to the input of the network
        # See design doc section (Implementation detail A.1 and A.2) for visualization
        ones_padding = torch.ones((B, 1, T, H, W), dtype=latent_state.dtype, device=latent_state.device)
        zeros_padding = torch.zeros((B, 1, T, H, W), dtype=latent_state.dtype, device=latent_state.device)
        assert condition.video_cond_bool is not None, "video_cond_bool should be set"

        # The input mask indicate whether the input is conditional region or not
        if condition.video_cond_bool:  # Condition one given video frames
            condition.condition_video_input_mask = (
                condition_video_indicator * ones_padding + (1 - condition_video_indicator) * zeros_padding
            )
        else:  # Unconditional case, use for cfg
            condition.condition_video_input_mask = zeros_padding

        return condition

    def generate_samples_from_batch(
        self,
        data_batch: dict,
        guidance: float = 1.5,
        seed: int = 1,
        state_shape: tuple | None = None,
        n_sample: int | None = 1,
        is_negative_prompt: bool = False,
        num_steps: int = 35,
        condition_latent: Optional[torch.Tensor] = None,
        num_condition_t: Optional[int] = None,
        condition_augment_sigma: float = None,
        add_input_frames_guidance: bool = False,
    ) -> Tensor:
        """Generates video samples conditioned on input frames.

        Args:
            data_batch: Input data dictionary
            guidance: Classifier-free guidance scale
            seed: Random seed for reproducibility
            state_shape: Shape of output tensor (defaults to model's state shape)
            n_sample: Number of samples to generate (defaults to batch size)
            is_negative_prompt: Whether to use negative prompting
            num_steps: Number of denoising steps
            condition_latent: Conditioning frames tensor (B,C,T,H,W)
            num_condition_t: Number of frames to condition on
            condition_augment_sigma: Noise level for condition augmentation
            add_input_frames_guidance: Whether to apply guidance to input frames

        Returns:
            Generated video samples tensor
        """
        assert condition_latent is not None, "condition_latent should be provided"
        condition, uncondition = self._get_conditions(
            data_batch, is_negative_prompt, condition_latent, num_condition_t, add_input_frames_guidance
        )

        self.scheduler.set_timesteps(num_steps)
        if n_sample is None:
            n_sample = condition_latent.shape[0]
        xt = torch.randn(size=(n_sample,) + tuple(state_shape), **self.tensor_kwargs) * self.scheduler.init_noise_sigma

        to_cp = self.net.is_context_parallel_enabled
        if to_cp:
            xt = split_inputs_cp(x=xt, seq_dim=2, cp_group=self.net.cp_group)

        for t in self.scheduler.timesteps:
            self.scheduler._init_step_index(t)
            sigma = self.scheduler.sigmas[self.scheduler.step_index].to(**self.tensor_kwargs)
            # Form new noise from latent
            xt = xt.to(**self.tensor_kwargs)
            new_xt, latent, indicator = self._augment_noise_with_latent(
                xt, sigma, condition, condition_augment_sigma=condition_augment_sigma, seed=seed
            )
            new_xt = new_xt.to(**self.tensor_kwargs)
            new_xt_scaled = self.scheduler.scale_model_input(new_xt, timestep=t)
            # Predict the noise residual
            t = t.to(**self.tensor_kwargs)
            net_output_cond = self.net(x=new_xt_scaled, timesteps=t, **condition.to_dict())
            net_output_uncond = self.net(x=new_xt_scaled, timesteps=t, **uncondition.to_dict())
            net_output = net_output_cond + guidance * (net_output_cond - net_output_uncond)
            # Replace indicated output with latent
            latent_unscaled = self._reverse_precondition_output(latent, xt=new_xt, sigma=sigma)
            new_output = indicator * latent_unscaled + (1 - indicator) * net_output
            # Compute the previous noisy sample x_t -> x_t-1
            xt = self.scheduler.step(new_output, t, new_xt).prev_sample
        samples = xt

        if to_cp:
            samples = cat_outputs_cp(samples, seq_dim=2, cp_group=self.net.cp_group)

        return samples

    def _get_conditions(
        self,
        data_batch: dict,
        is_negative_prompt: bool = False,
        condition_latent: Optional[torch.Tensor] = None,
        num_condition_t: Optional[int] = None,
        add_input_frames_guidance: bool = False,
    ):
        """Get the conditions for the model.

        Args:
            data_batch: Input data dictionary
            is_negative_prompt: Whether to use negative prompting
            condition_latent: Conditioning frames tensor (B,C,T,H,W)
            num_condition_t: Number of frames to condition on
            add_input_frames_guidance: Whether to apply guidance to input frames

        Returns:
            condition: Input conditions
            uncondition: Conditions removed/reduced to minimum (unconditioned)
        """
        if is_negative_prompt:
            condition, uncondition = self.conditioner.get_condition_with_negative_prompt(data_batch)
        else:
            condition, uncondition = self.conditioner.get_condition_uncondition(data_batch)

        condition.video_cond_bool = True
        condition = self.add_condition_video_indicator_and_video_input_mask(
            condition_latent, condition, num_condition_t
        )
        uncondition.video_cond_bool = False if add_input_frames_guidance else True
        uncondition = self.add_condition_video_indicator_and_video_input_mask(
            condition_latent, uncondition, num_condition_t
        )
        assert condition.gt_latent.allclose(uncondition.gt_latent)

        # For inference, check if parallel_state is initialized
        to_cp = self.net.is_context_parallel_enabled
        if parallel_state.is_initialized():
            condition = broadcast_condition(condition, to_tp=False, to_cp=to_cp)
            uncondition = broadcast_condition(uncondition, to_tp=False, to_cp=to_cp)

        return condition, uncondition

    def _augment_noise_with_latent(
        self,
        xt: Tensor,
        sigma: Tensor,
        condition: VideoExtendCondition,
        condition_augment_sigma: float = 0.001,
        seed: int = 1,
    ) -> tuple[Tensor, Tensor, Tensor]:
        """Augments the conditional frames with noise during inference.

        Args:
            xt (Tensor): noise
            sigma (Tensor): noise level for the generation region
            condition (VideoExtendCondition): condition object
                condition_video_indicator: binary tensor indicating the region is condition(value=1) or generation(value=0). Bx1xTx1x1 tensor.
                condition_video_input_mask: input mask for the network input, indicating the condition region. B,1,T,H,W tensor. will be concat with the input for the network.
            condition_augment_sigma (float): sigma for condition video augmentation in inference
            seed (int): random seed for reproducibility
        Returns:
            new_xt (Tensor): new latent-augmented noise tensor in shape B,C,T,H,W
            latent (Tensor): ground-truth latent tensor in shape B,C,T,H,W
            indicator (Tensor): ground-truth latent binary indicator tensor in shape B,C,T,H,W

        """
        # Augment the latent with different sigma value, and add the augment_sigma to the condition object if needed
        augment_sigma = condition_augment_sigma
        latent = condition.gt_latent
        indicator = condition.condition_video_indicator
        if augment_sigma >= sigma:
            indicator = torch.zeros_like(indicator)
        # Now apply the augment_sigma to the gt_latent
        noise = misc.arch_invariant_rand(
            latent.shape,
            torch.float32,
            self.tensor_kwargs["device"],
            seed,
        )
        augment_latent = latent + noise * augment_sigma
        augment_latent = self.scheduler.precondition_inputs(augment_latent, augment_sigma)
        augment_latent_unscaled = self._reverse_precondition_input(augment_latent, sigma)
        if self.net.is_context_parallel_enabled:
            latent = split_inputs_cp(condition.gt_latent, seq_dim=2, cp_group=self.net.cp_group)
            indicator = split_inputs_cp(indicator, seq_dim=2, cp_group=self.net.cp_group)
            augment_latent_unscaled = split_inputs_cp(augment_latent_unscaled, seq_dim=2, cp_group=self.net.cp_group)
        # Compose the model input with condition region (augment_latent) and generation region (noise_x)
        new_xt = indicator * augment_latent_unscaled + (1 - indicator) * xt
        return new_xt, latent, indicator

    def _reverse_precondition_input(self, xt: Tensor, sigma: Tensor) -> Tensor:
        c_in = 1 / ((sigma**2 + self.config.sigma_data**2) ** 0.5)
        xt_unscaled = xt / c_in
        return xt_unscaled

    def _reverse_precondition_output(self, latent: Tensor, xt: Tensor, sigma: Tensor) -> Tensor:
        sigma_data = self.scheduler.config.sigma_data
        c_skip = sigma_data**2 / (sigma**2 + sigma_data**2)
        c_out = sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
        latent_unscaled = (latent - c_skip * xt) / c_out
        return latent_unscaled