File size: 20,165 Bytes
b6af722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional

import numpy as np
import torch
from einops import rearrange, repeat
from torch import nn
from torch.distributed import ProcessGroup, get_process_group_ranks

from cosmos_predict1.diffusion.module.attention import normalize
from cosmos_predict1.diffusion.module.parallel import split_inputs_cp
from cosmos_predict1.diffusion.module.timm import trunc_normal_


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
    """
    embed_dim: output dimension for each position
    pos: a list of positions to be encoded: size (M,)
    out: (M, D)
    """
    assert embed_dim % 2 == 0
    omega = np.arange(embed_dim // 2, dtype=np.float64)
    omega /= embed_dim / 2.0
    omega = 1.0 / 10000**omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = np.einsum("m,d->md", pos, omega)  # (M, D/2), outer product

    emb_sin = np.sin(out)  # (M, D/2)
    emb_cos = np.cos(out)  # (M, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
    return emb


class VideoPositionEmb(nn.Module):
    def __init__(self):
        super().__init__()
        self.cp_group = None

    def enable_context_parallel(self, cp_group: ProcessGroup):
        self.cp_group = cp_group

    def disable_context_parallel(self):
        self.cp_group = None

    def forward(self, x_B_T_H_W_C: torch.Tensor, fps=Optional[torch.Tensor]) -> torch.Tensor:
        """
        It delegates the embedding generation to generate_embeddings function.
        """
        B_T_H_W_C = x_B_T_H_W_C.shape
        if self.cp_group is not None:
            cp_ranks = get_process_group_ranks(self.cp_group)
            cp_size = len(cp_ranks)
            B, T, H, W, C = B_T_H_W_C
            B_T_H_W_C = (B, T * cp_size, H, W, C)
        embeddings = self.generate_embeddings(B_T_H_W_C, fps=fps)

        if self.cp_group is not None:
            if isinstance(self, VideoRopePosition3DEmb):
                seq_dim = 0
            else:
                seq_dim = 1
            embeddings = split_inputs_cp(x=embeddings, seq_dim=seq_dim, cp_group=self.cp_group)
        return embeddings

    def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor]):
        raise NotImplementedError


class VideoRopePosition3DEmb(VideoPositionEmb):
    def __init__(
        self,
        *,  # enforce keyword arguments
        head_dim: int,
        len_h: int,
        len_w: int,
        len_t: int,
        base_fps: int = 24,
        h_extrapolation_ratio: float = 1.0,
        w_extrapolation_ratio: float = 1.0,
        t_extrapolation_ratio: float = 1.0,
        **kwargs,  # used for compatibility with other positional embeddings; unused in this class
    ):
        del kwargs
        super().__init__()
        self.register_buffer("seq", torch.arange(max(len_h, len_w, len_t), dtype=torch.float))
        self.base_fps = base_fps
        self.max_h = len_h
        self.max_w = len_w

        dim = head_dim
        dim_h = dim // 6 * 2
        dim_w = dim_h
        dim_t = dim - 2 * dim_h
        assert dim == dim_h + dim_w + dim_t, f"bad dim: {dim} != {dim_h} + {dim_w} + {dim_t}"
        self.register_buffer(
            "dim_spatial_range",
            torch.arange(0, dim_h, 2)[: (dim_h // 2)].float().cuda() / dim_h,
            persistent=False,
        )
        self.register_buffer(
            "dim_temporal_range",
            torch.arange(0, dim_t, 2)[: (dim_t // 2)].float().cuda() / dim_t,
            persistent=False,
        )

        self.h_ntk_factor = h_extrapolation_ratio ** (dim_h / (dim_h - 2))
        self.w_ntk_factor = w_extrapolation_ratio ** (dim_w / (dim_w - 2))
        self.t_ntk_factor = t_extrapolation_ratio ** (dim_t / (dim_t - 2))

    def generate_embeddings(
        self,
        B_T_H_W_C: torch.Size,
        fps: Optional[torch.Tensor] = None,
        h_ntk_factor: Optional[float] = None,
        w_ntk_factor: Optional[float] = None,
        t_ntk_factor: Optional[float] = None,
    ):
        """
        Generate embeddings for the given input size.

        Args:
            B_T_H_W_C (torch.Size): Input tensor size (Batch, Time, Height, Width, Channels).
            fps (Optional[torch.Tensor], optional): Frames per second. Defaults to None.
            h_ntk_factor (Optional[float], optional): Height NTK factor. If None, uses self.h_ntk_factor.
            w_ntk_factor (Optional[float], optional): Width NTK factor. If None, uses self.w_ntk_factor.
            t_ntk_factor (Optional[float], optional): Time NTK factor. If None, uses self.t_ntk_factor.

        Returns:
            Not specified in the original code snippet.
        """
        h_ntk_factor = h_ntk_factor if h_ntk_factor is not None else self.h_ntk_factor
        w_ntk_factor = w_ntk_factor if w_ntk_factor is not None else self.w_ntk_factor
        t_ntk_factor = t_ntk_factor if t_ntk_factor is not None else self.t_ntk_factor

        h_theta = 10000.0 * h_ntk_factor
        w_theta = 10000.0 * w_ntk_factor
        t_theta = 10000.0 * t_ntk_factor

        h_spatial_freqs = 1.0 / (h_theta**self.dim_spatial_range)
        w_spatial_freqs = 1.0 / (w_theta**self.dim_spatial_range)
        temporal_freqs = 1.0 / (t_theta**self.dim_temporal_range)

        B, T, H, W, _ = B_T_H_W_C
        uniform_fps = (fps is None) or (fps.min() == fps.max())
        assert (
            uniform_fps or B == 1 or T == 1
        ), "For video batch, batch size should be 1 for non-uniform fps. For image batch, T should be 1"
        assert (
            H <= self.max_h and W <= self.max_w
        ), f"Input dimensions (H={H}, W={W}) exceed the maximum dimensions (max_h={self.max_h}, max_w={self.max_w})"
        half_emb_h = torch.outer(self.seq[:H], h_spatial_freqs)
        half_emb_w = torch.outer(self.seq[:W], w_spatial_freqs)

        # apply sequence scaling in temporal dimension
        if fps is None:  # image case
            assert T == 1, "T should be 1 for image batch."
            half_emb_t = torch.outer(self.seq[:T], temporal_freqs)
        else:
            half_emb_t = torch.outer(self.seq[:T] / fps[:1] * self.base_fps, temporal_freqs)

        em_T_H_W_D = torch.cat(
            [
                repeat(half_emb_t, "t d -> t h w d", h=H, w=W),
                repeat(half_emb_h, "h d -> t h w d", t=T, w=W),
                repeat(half_emb_w, "w d -> t h w d", t=T, h=H),
            ]
            * 2,
            dim=-1,
        )

        return rearrange(em_T_H_W_D, "t h w d -> (t h w) 1 1 d").float()


class LearnablePosEmbAxis(VideoPositionEmb):
    def __init__(
        self,
        *,  # enforce keyword arguments
        interpolation: str,
        model_channels: int,
        len_h: int,
        len_w: int,
        len_t: int,
        **kwargs,
    ):
        """
        Args:
            interpolation (str): we curretly only support "crop", ideally when we need extrapolation capacity, we should adjust frequency or other more advanced methods. they are not implemented yet.
        """
        del kwargs  # unused
        super().__init__()
        self.interpolation = interpolation
        assert self.interpolation in ["crop"], f"Unknown interpolation method {self.interpolation}"

        self.pos_emb_h = nn.Parameter(torch.zeros(len_h, model_channels))
        self.pos_emb_w = nn.Parameter(torch.zeros(len_w, model_channels))
        self.pos_emb_t = nn.Parameter(torch.zeros(len_t, model_channels))

        trunc_normal_(self.pos_emb_h, std=0.02)
        trunc_normal_(self.pos_emb_w, std=0.02)
        trunc_normal_(self.pos_emb_t, std=0.02)

    def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor]) -> torch.Tensor:
        B, T, H, W, _ = B_T_H_W_C
        if self.interpolation == "crop":
            emb_h_H = self.pos_emb_h[:H]
            emb_w_W = self.pos_emb_w[:W]
            emb_t_T = self.pos_emb_t[:T]
            emb = (
                repeat(emb_t_T, "t d-> b t h w d", b=B, h=H, w=W)
                + repeat(emb_h_H, "h d-> b t h w d", b=B, t=T, w=W)
                + repeat(emb_w_W, "w d-> b t h w d", b=B, t=T, h=H)
            )
            assert list(emb.shape)[:4] == [B, T, H, W], f"bad shape: {list(emb.shape)[:4]} != {B, T, H, W}"
        else:
            raise ValueError(f"Unknown interpolation method {self.interpolation}")

        return normalize(emb, dim=-1, eps=1e-6)


class MultiviewVideoPositionEmb(nn.Module):
    def __init__(
        self,
    ):
        super().__init__()
        self.cp_group = None

    def enable_context_parallel(self, cp_group: ProcessGroup):
        self.cp_group = cp_group

    def disable_context_parallel(self):
        self.cp_group = None

    def forward(self, x_B_T_H_W_C: torch.Tensor, fps=Optional[torch.Tensor]) -> torch.Tensor:
        """
        With CP, the function assume that the input tensor is already split. It delegates the embedding generation to generate_embeddings function.
        """
        B_T_H_W_C = x_B_T_H_W_C.shape
        if self.cp_group is not None:
            cp_ranks = get_process_group_ranks(self.cp_group)
            cp_size = len(cp_ranks)
            B, T, H, W, C = B_T_H_W_C
            B_T_H_W_C = (B, T * cp_size, H, W, C)
        embeddings = self.generate_embeddings(B_T_H_W_C, fps=fps)

        if self.cp_group is not None:
            if isinstance(self, MultiviewVideoRopePosition3DEmb):
                seq_dim = 1
                embeddings = rearrange(embeddings, "(V T) H W D -> V (T H W) 1 1 D", V=self.n_views).float()
                # rearrange(em_T_H_W_D, "t h w d -> (t h w) 1 1 d").float()
                embeddings = split_inputs_cp(x=embeddings, seq_dim=seq_dim, cp_group=self.cp_group)
                embeddings = rearrange(embeddings, "V T 1 1 D -> (V T) 1 1 D", V=self.n_views).float()
            else:
                seq_dim = 1
                embeddings = rearrange(embeddings, "B (V T) H W C -> (B V) T H W C", V=self.n_views)
                embeddings = split_inputs_cp(x=embeddings, seq_dim=seq_dim, cp_group=self.cp_group)
                embeddings = rearrange(embeddings, "(B V) T H W C -> B (V T) H W C", V=self.n_views)
        else:
            if isinstance(self, MultiviewVideoRopePosition3DEmb):
                embeddings = rearrange(embeddings, "t h w d -> (t h w) 1 1 d").float()

        return embeddings

    def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor]):
        raise NotImplementedError


class MultiviewVideoRopePosition3DEmb(MultiviewVideoPositionEmb):
    def __init__(
        self,
        *,  # enforce keyword arguments
        head_dim: int,
        len_h: int,
        len_w: int,
        len_t: int,
        base_fps: int = 24,
        h_extrapolation_ratio: float = 1.0,
        w_extrapolation_ratio: float = 1.0,
        t_extrapolation_ratio: float = 1.0,
        n_views: int = 4,
        **kwargs,  # used for compatibility with other positional embeddings; unused in this class
    ):
        del kwargs
        super().__init__()
        self.register_buffer("seq", torch.arange(max(len_h, len_w, len_t), dtype=torch.float))
        self.base_fps = base_fps
        self.max_h = len_h
        self.max_w = len_w
        self.n_views = n_views
        dim = head_dim
        dim_h = dim // 6 * 2
        dim_w = dim_h
        dim_t = dim - 2 * dim_h
        assert dim == dim_h + dim_w + dim_t, f"bad dim: {dim} != {dim_h} + {dim_w} + {dim_t}"
        self.register_buffer(
            "dim_spatial_range",
            torch.arange(0, dim_h, 2)[: (dim_h // 2)].float().cuda() / dim_h,
            persistent=False,
        )
        self.register_buffer(
            "dim_temporal_range",
            torch.arange(0, dim_t, 2)[: (dim_t // 2)].float().cuda() / dim_t,
            persistent=False,
        )

        self.h_ntk_factor = h_extrapolation_ratio ** (dim_h / (dim_h - 2))
        self.w_ntk_factor = w_extrapolation_ratio ** (dim_w / (dim_w - 2))
        self.t_ntk_factor = t_extrapolation_ratio ** (dim_t / (dim_t - 2))

    def generate_embedding_for_batch(
        self,
        B_T_H_W_C: torch.Size,
        fps: Optional[torch.Tensor] = None,
        h_ntk_factor: Optional[float] = None,
        w_ntk_factor: Optional[float] = None,
        t_ntk_factor: Optional[float] = None,
    ):
        """
        Generate embeddings for the given input size.

        Args:
            B_T_H_W_C (torch.Size): Input tensor size (Batch, Time, Height, Width, Channels).
            fps (Optional[torch.Tensor], optional): Frames per second. Defaults to None.
            h_ntk_factor (Optional[float], optional): Height NTK factor. If None, uses self.h_ntk_factor. Defaults to None.
            w_ntk_factor (Optional[float], optional): Width NTK factor. If None, uses self.w_ntk_factor. Defaults to None.
            t_ntk_factor (Optional[float], optional): Time NTK factor. If None, uses self.t_ntk_factor. Defaults to None.

        Returns:
            Not specified in the original code snippet.
        """
        h_ntk_factor = h_ntk_factor if h_ntk_factor is not None else self.h_ntk_factor
        w_ntk_factor = w_ntk_factor if w_ntk_factor is not None else self.w_ntk_factor
        t_ntk_factor = t_ntk_factor if t_ntk_factor is not None else self.t_ntk_factor

        h_theta = 10000.0 * h_ntk_factor
        w_theta = 10000.0 * w_ntk_factor
        t_theta = 10000.0 * t_ntk_factor

        h_spatial_freqs = 1.0 / (h_theta**self.dim_spatial_range)
        w_spatial_freqs = 1.0 / (w_theta**self.dim_spatial_range)
        temporal_freqs = 1.0 / (t_theta**self.dim_temporal_range)

        B, T, H, W, _ = B_T_H_W_C
        uniform_fps = (fps is None) or (fps.min() == fps.max())
        assert uniform_fps  # only support uniform fps now

        assert (
            uniform_fps or B == 1 or T == 1
        ), "For video batch, batch size should be 1 for non-uniform fps. For image batch, T should be 1"
        assert (
            H <= self.max_h and W <= self.max_w
        ), f"Input dimensions (H={H}, W={W}) exceed the maximum dimensions (max_h={self.max_h}, max_w={self.max_w}) configured for positional embedding. Please adjust the input size or increase the maximum dimensions in the model configuration."
        half_emb_h = torch.outer(self.seq[:H], h_spatial_freqs)
        half_emb_w = torch.outer(self.seq[:W], w_spatial_freqs)

        # apply sequence scaling in temporal dimension
        if fps is None:  # image case
            assert T == 1, "T should be 1 for image batch."
            half_emb_t = torch.outer(self.seq[:T], temporal_freqs)
        else:
            half_emb_t = torch.outer(self.seq[:T] / fps[:1] * self.base_fps, temporal_freqs)

        em_T_H_W_D = torch.cat(
            [
                repeat(half_emb_t, "t d -> t h w d", h=H, w=W),
                repeat(half_emb_h, "h d -> t h w d", t=T, w=W),
                repeat(half_emb_w, "w d -> t h w d", t=T, h=H),
            ]
            * 2,
            dim=-1,
        )

        return em_T_H_W_D

    def generate_embeddings(
        self,
        B_T_H_W_C: torch.Size,
        fps: Optional[torch.Tensor] = None,
        h_ntk_factor: Optional[float] = None,
        w_ntk_factor: Optional[float] = None,
        t_ntk_factor: Optional[float] = None,
    ):
        """
        Generate embeddings for the given input size. The camera view dimension is merged in the T dimension

        Args:
            B_T_H_W_C (torch.Size): Input tensor size (Batch, Time * Views, Height, Width, Channels).
            fps (Optional[torch.Tensor], optional): Frames per second. Defaults to None.
            h_ntk_factor (Optional[float], optional): Height NTK factor. If None, uses self.h_ntk_factor. Defaults to None.
            w_ntk_factor (Optional[float], optional): Width NTK factor. If None, uses self.w_ntk_factor. Defaults to None.
            t_ntk_factor (Optional[float], optional): Time NTK factor. If None, uses self.t_ntk_factor. Defaults to None.

        Returns:
            Not specified in the original code snippet.
        """

        B, T, H, W, C = B_T_H_W_C

        single_view_B_T_H_W_C = (B, T // self.n_views, H, W, C)
        em_T_H_W_D = torch.cat(
            [
                self.generate_embedding_for_batch(
                    single_view_B_T_H_W_C,
                    fps=fps,
                    h_ntk_factor=h_ntk_factor,
                    w_ntk_factor=w_ntk_factor,
                    t_ntk_factor=t_ntk_factor,
                )
                for item in range(self.n_views)
            ],
            dim=0,
        )
        return em_T_H_W_D


class MultiviewSinCosPosEmbAxis(MultiviewVideoPositionEmb):
    def __init__(
        self,
        *,  # enforce keyword arguments
        interpolation: str,
        model_channels: int,
        len_h: int,
        len_w: int,
        len_t: int,
        h_extrapolation_ratio: float = 1.0,
        w_extrapolation_ratio: float = 1.0,
        t_extrapolation_ratio: float = 1.0,
        n_views: int = 4,
        **kwargs,
    ):
        """
        Args:
            interpolation (str): we curretly only support "crop", ideally when we need extrapolation capacity, we should adjust frequency or other more advanced methods. they are not implemented yet.
        """
        del kwargs  # unused
        self.n_views = n_views
        super().__init__()
        self.interpolation = interpolation
        assert self.interpolation in ["crop"], f"Unknown interpolation method {self.interpolation}"

        dim = model_channels
        dim_h = dim // 6 * 2
        dim_w = dim_h
        dim_t = dim - 2 * dim_h
        assert dim == dim_h + dim_w + dim_t, f"bad dim: {dim} != {dim_h} + {dim_w} + {dim_t}"

        # rescale pos id is equivalent to rescale frequency
        emb_h = get_1d_sincos_pos_embed_from_grid(dim_h, pos=np.arange(len_h) * 1.0 / h_extrapolation_ratio)
        emb_w = get_1d_sincos_pos_embed_from_grid(dim_w, pos=np.arange(len_w) * 1.0 / w_extrapolation_ratio)
        emb_t = get_1d_sincos_pos_embed_from_grid(dim_t, pos=np.arange(len_t) * 1.0 / t_extrapolation_ratio)

        self.register_buffer("pos_emb_h", torch.from_numpy(emb_h).float(), persistent=False)
        self.register_buffer("pos_emb_w", torch.from_numpy(emb_w).float(), persistent=False)
        self.register_buffer("pos_emb_t", torch.from_numpy(emb_t).float(), persistent=False)

    def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor]) -> torch.Tensor:
        B, T, H, W, C = B_T_H_W_C

        single_view_T = T // self.n_views

        if self.interpolation == "crop":
            emb_h_H = self.pos_emb_h[:H]
            emb_w_W = self.pos_emb_w[:W]
            emb_t_T = self.pos_emb_t[:single_view_T]
            emb = torch.cat(
                [
                    torch.cat(
                        [
                            repeat(emb_t_T, "t d-> b t h w d", b=B, h=H, w=W),
                            repeat(emb_h_H, "h d-> b t h w d", b=B, t=single_view_T, w=W),
                            repeat(emb_w_W, "w d-> b t h w d", b=B, t=single_view_T, h=H),
                        ],
                        dim=-1,
                    )
                    for _ in range(self.n_views)
                ],
                1,
            )
            assert list(emb.shape)[:4] == [B, T, H, W], f"bad shape: {list(emb.shape)[:4]} != {B, T, H, W}"
            return emb

        raise ValueError(f"Unknown interpolation method {self.interpolation}")