Spaces:
Build error
Build error
File size: 10,408 Bytes
b6af722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A general framework for various sampling algorithm from a diffusion model.
Impl based on
* Refined Exponential Solver (RES) in https://arxiv.org/pdf/2308.02157
* also clude other impl, DDIM, DEIS, DPM-Solver, EDM sampler.
Most of sampling algorihtm, Runge-Kutta, Multi-step, etc, can be impl in this framework by \
adding new step function in get_runge_kutta_fn or get_multi_step_fn.
"""
import math
from typing import Any, Callable, List, Literal, Optional, Tuple, Union
import attrs
import torch
from cosmos_predict1.diffusion.functional.multi_step import get_multi_step_fn, is_multi_step_fn_supported
from cosmos_predict1.diffusion.functional.runge_kutta import get_runge_kutta_fn, is_runge_kutta_fn_supported
from cosmos_predict1.utils.config import make_freezable
COMMON_SOLVER_OPTIONS = Literal["2ab", "2mid", "1euler"]
@make_freezable
@attrs.define(slots=False)
class SolverConfig:
is_multi: bool = False
rk: str = "2mid"
multistep: str = "2ab"
# following parameters control stochasticity, see EDM paper
# BY default, we use deterministic with no stochasticity
s_churn: float = 0.0
s_t_max: float = float("inf")
s_t_min: float = 0.05
s_noise: float = 1.0
@make_freezable
@attrs.define(slots=False)
class SolverTimestampConfig:
nfe: int = 50
t_min: float = 0.002
t_max: float = 80.0
order: float = 7.0
is_forward: bool = False # whether generate forward or backward timestamps
@make_freezable
@attrs.define(slots=False)
class SamplerConfig:
solver: SolverConfig = attrs.field(factory=SolverConfig)
timestamps: SolverTimestampConfig = attrs.field(factory=SolverTimestampConfig)
sample_clean: bool = True # whether run one last step to generate clean image
def get_rev_ts(
t_min: float, t_max: float, num_steps: int, ts_order: Union[int, float], is_forward: bool = False
) -> torch.Tensor:
"""
Generate a sequence of reverse time steps.
Args:
t_min (float): The minimum time value.
t_max (float): The maximum time value.
num_steps (int): The number of time steps to generate.
ts_order (Union[int, float]): The order of the time step progression.
is_forward (bool, optional): If True, returns the sequence in forward order. Defaults to False.
Returns:
torch.Tensor: A tensor containing the generated time steps in reverse or forward order.
Raises:
ValueError: If `t_min` is not less than `t_max`.
TypeError: If `ts_order` is not an integer or float.
"""
if t_min >= t_max:
raise ValueError("t_min must be less than t_max")
if not isinstance(ts_order, (int, float)):
raise TypeError("ts_order must be an integer or float")
step_indices = torch.arange(num_steps + 1, dtype=torch.float64)
time_steps = (
t_max ** (1 / ts_order) + step_indices / num_steps * (t_min ** (1 / ts_order) - t_max ** (1 / ts_order))
) ** ts_order
if is_forward:
return time_steps.flip(dims=(0,))
return time_steps
class Sampler(torch.nn.Module):
def __init__(self, cfg: Optional[SamplerConfig] = None):
super().__init__()
if cfg is None:
cfg = SamplerConfig()
self.cfg = cfg
@torch.no_grad()
def forward(
self,
x0_fn: Callable,
x_sigma_max: torch.Tensor,
num_steps: int = 35,
sigma_min: float = 0.002,
sigma_max: float = 80,
rho: float = 7,
S_churn: float = 0,
S_min: float = 0,
S_max: float = float("inf"),
S_noise: float = 1,
solver_option: str = "2ab",
) -> torch.Tensor:
in_dtype = x_sigma_max.dtype
def float64_x0_fn(x_B_StateShape: torch.Tensor, t_B: torch.Tensor) -> torch.Tensor:
return x0_fn(x_B_StateShape.to(in_dtype), t_B.to(in_dtype)).to(torch.float64)
is_multistep = is_multi_step_fn_supported(solver_option)
is_rk = is_runge_kutta_fn_supported(solver_option)
assert is_multistep or is_rk, f"Only support multistep or Runge-Kutta method, got {solver_option}"
solver_cfg = SolverConfig(
s_churn=S_churn,
s_t_max=S_max,
s_t_min=S_min,
s_noise=S_noise,
is_multi=is_multistep,
rk=solver_option,
multistep=solver_option,
)
timestamps_cfg = SolverTimestampConfig(nfe=num_steps, t_min=sigma_min, t_max=sigma_max, order=rho)
sampler_cfg = SamplerConfig(solver=solver_cfg, timestamps=timestamps_cfg, sample_clean=True)
return self._forward_impl(float64_x0_fn, x_sigma_max, sampler_cfg).to(in_dtype)
@torch.no_grad()
def _forward_impl(
self,
denoiser_fn: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
noisy_input_B_StateShape: torch.Tensor,
sampler_cfg: Optional[SamplerConfig] = None,
callback_fns: Optional[List[Callable]] = None,
) -> torch.Tensor:
"""
Internal implementation of the forward pass.
Args:
denoiser_fn: Function to denoise the input.
noisy_input_B_StateShape: Input tensor with noise.
sampler_cfg: Configuration for the sampler.
callback_fns: List of callback functions to be called during sampling.
Returns:
torch.Tensor: Denoised output tensor.
"""
sampler_cfg = self.cfg if sampler_cfg is None else sampler_cfg
solver_order = 1 if sampler_cfg.solver.is_multi else int(sampler_cfg.solver.rk[0])
num_timestamps = sampler_cfg.timestamps.nfe // solver_order
sigmas_L = get_rev_ts(
sampler_cfg.timestamps.t_min, sampler_cfg.timestamps.t_max, num_timestamps, sampler_cfg.timestamps.order
).to(noisy_input_B_StateShape.device)
denoised_output = differential_equation_solver(
denoiser_fn, sigmas_L, sampler_cfg.solver, callback_fns=callback_fns
)(noisy_input_B_StateShape)
if sampler_cfg.sample_clean:
# Override denoised_output with fully denoised version
ones = torch.ones(denoised_output.size(0), device=denoised_output.device, dtype=denoised_output.dtype)
denoised_output = denoiser_fn(denoised_output, sigmas_L[-1] * ones)
return denoised_output
def fori_loop(lower: int, upper: int, body_fun: Callable[[int, Any], Any], init_val: Any) -> Any:
"""
Implements a for loop with a function.
Args:
lower: Lower bound of the loop (inclusive).
upper: Upper bound of the loop (exclusive).
body_fun: Function to be applied in each iteration.
init_val: Initial value for the loop.
Returns:
The final result after all iterations.
"""
val = init_val
for i in range(lower, upper):
val = body_fun(i, val)
return val
def differential_equation_solver(
x0_fn: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
sigmas_L: torch.Tensor,
solver_cfg: SolverConfig,
callback_fns: Optional[List[Callable]] = None,
) -> Callable[[torch.Tensor], torch.Tensor]:
"""
Creates a differential equation solver function.
Args:
x0_fn: Function to compute x0 prediction.
sigmas_L: Tensor of sigma values with shape [L,].
solver_cfg: Configuration for the solver.
callback_fns: Optional list of callback functions.
Returns:
A function that solves the differential equation.
"""
num_step = len(sigmas_L) - 1
if solver_cfg.is_multi:
update_step_fn = get_multi_step_fn(solver_cfg.multistep)
else:
update_step_fn = get_runge_kutta_fn(solver_cfg.rk)
eta = min(solver_cfg.s_churn / (num_step + 1), math.sqrt(1.2) - 1)
def sample_fn(input_xT_B_StateShape: torch.Tensor) -> torch.Tensor:
"""
Samples from the differential equation.
Args:
input_xT_B_StateShape: Input tensor with shape [B, StateShape].
Returns:
Output tensor with shape [B, StateShape].
"""
ones_B = torch.ones(input_xT_B_StateShape.size(0), device=input_xT_B_StateShape.device, dtype=torch.float64)
def step_fn(
i_th: int, state: Tuple[torch.Tensor, Optional[List[torch.Tensor]]]
) -> Tuple[torch.Tensor, Optional[List[torch.Tensor]]]:
input_x_B_StateShape, x0_preds = state
sigma_cur_0, sigma_next_0 = sigmas_L[i_th], sigmas_L[i_th + 1]
# algorithm 2: line 4-6
if solver_cfg.s_t_min < sigma_cur_0 < solver_cfg.s_t_max:
hat_sigma_cur_0 = sigma_cur_0 + eta * sigma_cur_0
input_x_B_StateShape = input_x_B_StateShape + (
hat_sigma_cur_0**2 - sigma_cur_0**2
).sqrt() * solver_cfg.s_noise * torch.randn_like(input_x_B_StateShape)
sigma_cur_0 = hat_sigma_cur_0
if solver_cfg.is_multi:
x0_pred_B_StateShape = x0_fn(input_x_B_StateShape, sigma_cur_0 * ones_B)
output_x_B_StateShape, x0_preds = update_step_fn(
input_x_B_StateShape, sigma_cur_0 * ones_B, sigma_next_0 * ones_B, x0_pred_B_StateShape, x0_preds
)
else:
output_x_B_StateShape, x0_preds = update_step_fn(
input_x_B_StateShape, sigma_cur_0 * ones_B, sigma_next_0 * ones_B, x0_fn
)
if callback_fns:
for callback_fn in callback_fns:
callback_fn(**locals())
return output_x_B_StateShape, x0_preds
x_at_eps, _ = fori_loop(0, num_step, step_fn, [input_xT_B_StateShape, None])
return x_at_eps
return sample_fn
|