Spaces:
Build error
Build error
File size: 17,457 Bytes
b6af722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Run this command to interactively debug:
PYTHONPATH=. python cosmos_predict1/diffusion/posttrain/datasets/dataset_3D.py
Adapted from:
https://github.com/bytedance/IRASim/blob/main/dataset/dataset_3D.py
"""
import json
import os
import pickle
import random
import traceback
import warnings
from concurrent.futures import ThreadPoolExecutor, as_completed
import imageio
import numpy as np
import torch
from decord import VideoReader, cpu
from einops import rearrange
from torch.utils.data import Dataset
from torchvision import transforms as T
from tqdm import tqdm
from cosmos_predict1.diffusion.training.datasets.dataset_utils import (
Resize_Preprocess,
ToTensorVideo,
euler2rotm,
rotm2euler,
)
class Dataset_3D(Dataset):
def __init__(
self,
train_annotation_path,
val_annotation_path,
test_annotation_path,
video_path,
sequence_interval,
num_frames,
cam_ids,
accumulate_action,
video_size,
val_start_frame_interval,
debug=False,
normalize=False,
pre_encode=False,
do_evaluate=False,
load_t5_embeddings=False,
load_action=True,
mode="train",
):
"""Dataset class for loading 3D robot action-conditional data.
This dataset loads robot trajectories consisting of RGB video frames, robot states (arm positions and gripper states),
and computes relative actions between consecutive frames.
Args:
train_annotation_path (str): Path to training annotation files
val_annotation_path (str): Path to validation annotation files
test_annotation_path (str): Path to test annotation files
video_path (str): Base path to video files
sequence_interval (int): Interval between sampled frames in a sequence
num_frames (int): Number of frames to load per sequence
cam_ids (list): List of camera IDs to sample from
accumulate_action (bool): Whether to accumulate actions relative to first frame
video_size (list): Target size [H,W] for video frames
val_start_frame_interval (int): Frame sampling interval for validation/test
debug (bool, optional): If True, only loads subset of data. Defaults to False.
normalize (bool, optional): Whether to normalize video frames. Defaults to False.
pre_encode (bool, optional): Whether to pre-encode video frames. Defaults to False.
do_evaluate (bool, optional): Whether in evaluation mode. Defaults to False.
load_t5_embeddings (bool, optional): Whether to load T5 embeddings. Defaults to False.
load_action (bool, optional): Whether to load actions. Defaults to True.
mode (str, optional): Dataset mode - 'train', 'val' or 'test'. Defaults to 'train'.
The dataset loads robot trajectories and computes:
- RGB video frames from specified camera views
- Robot arm states (xyz position + euler angles)
- Gripper states (binary open/closed)
- Relative actions between consecutive frames
Actions are computed as relative transforms between frames:
- Translation: xyz offset in previous frame's coordinate frame
- Rotation: euler angles of relative rotation
- Gripper: binary gripper state
Returns dict with:
- video: RGB frames tensor [T,C,H,W]
- action: Action tensor [T-1,7]
- video_name: Dict with episode/frame metadata
- latent: Pre-encoded video features if pre_encode=True
"""
super().__init__()
if mode == "train":
self.data_path = train_annotation_path
self.start_frame_interval = 1
elif mode == "val":
self.data_path = val_annotation_path
self.start_frame_interval = val_start_frame_interval
elif mode == "test":
self.data_path = test_annotation_path
self.start_frame_interval = val_start_frame_interval
self.video_path = video_path
self.sequence_interval = sequence_interval
self.mode = mode
self.sequence_length = num_frames
self.normalize = normalize
self.pre_encode = pre_encode
self.load_t5_embeddings = load_t5_embeddings
self.load_action = load_action
self.cam_ids = cam_ids
self.accumulate_action = accumulate_action
self.action_dim = 7 # ee xyz (3) + ee euler (3) + gripper(1)
self.c_act_scaler = [20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 1.0]
self.c_act_scaler = np.array(self.c_act_scaler, dtype=float)
self.ann_files = self._init_anns(self.data_path)
self.samples = self._init_sequences(self.ann_files)
self.samples = sorted(self.samples, key=lambda x: (x["ann_file"], x["frame_ids"][0]))
if debug and not do_evaluate:
self.samples = self.samples[0:10]
self.wrong_number = 0
self.transform = T.Compose([T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)])
self.training = False
self.preprocess = T.Compose(
[
ToTensorVideo(),
Resize_Preprocess(tuple(video_size)), # 288 512
T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
]
)
self.not_norm_preprocess = T.Compose([ToTensorVideo(), Resize_Preprocess(tuple(video_size))])
def __str__(self):
return f"{len(self.ann_files)} samples from {self.data_path}"
def _init_anns(self, data_dir):
ann_files = [os.path.join(data_dir, f) for f in os.listdir(data_dir) if f.endswith(".json")]
return ann_files
def _init_sequences(self, ann_files):
samples = []
with ThreadPoolExecutor(32) as executor:
future_to_ann_file = {
executor.submit(self._load_and_process_ann_file, ann_file): ann_file for ann_file in ann_files
}
for future in tqdm(as_completed(future_to_ann_file), total=len(ann_files)):
samples.extend(future.result())
return samples
def _load_and_process_ann_file(self, ann_file):
samples = []
with open(ann_file, "r") as f:
ann = json.load(f)
n_frames = len(ann["state"])
for frame_i in range(0, n_frames, self.start_frame_interval):
sample = dict()
sample["ann_file"] = ann_file
sample["frame_ids"] = []
curr_frame_i = frame_i
while True:
if curr_frame_i > (n_frames - 1):
break
sample["frame_ids"].append(curr_frame_i)
if len(sample["frame_ids"]) == self.sequence_length:
break
curr_frame_i += self.sequence_interval
# make sure there are sequence_length number of frames
if len(sample["frame_ids"]) == self.sequence_length:
samples.append(sample)
return samples
def __len__(self):
return len(self.samples)
def _load_video(self, video_path, frame_ids):
vr = VideoReader(video_path, ctx=cpu(0), num_threads=2)
assert (np.array(frame_ids) < len(vr)).all()
assert (np.array(frame_ids) >= 0).all()
vr.seek(0)
frame_data = vr.get_batch(frame_ids).asnumpy()
return frame_data
def _get_frames(self, label, frame_ids, cam_id, pre_encode):
if pre_encode:
raise NotImplementedError("Pre-encoded videos are not supported for this dataset.")
else:
video_path = label["videos"][cam_id]["video_path"]
video_path = os.path.join(self.video_path, video_path)
frames = self._load_video(video_path, frame_ids)
frames = frames.astype(np.uint8)
frames = torch.from_numpy(frames).permute(0, 3, 1, 2) # (l, c, h, w)
def printvideo(videos, filename):
t_videos = rearrange(videos, "f c h w -> f h w c")
t_videos = (
((t_videos / 2.0 + 0.5).clamp(0, 1) * 255).detach().to(dtype=torch.uint8).cpu().contiguous().numpy()
)
print(t_videos.shape)
writer = imageio.get_writer(filename, fps=4) # fps 是帧率
for frame in t_videos:
writer.append_data(frame) # 1 4 13 23 # fp16 24 76 456 688
if self.normalize:
frames = self.preprocess(frames)
else:
frames = self.not_norm_preprocess(frames)
frames = torch.clamp(frames * 255.0, 0, 255).to(torch.uint8)
return frames
def _get_obs(self, label, frame_ids, cam_id, pre_encode):
if cam_id is None:
temp_cam_id = random.choice(self.cam_ids)
else:
temp_cam_id = cam_id
frames = self._get_frames(label, frame_ids, cam_id=temp_cam_id, pre_encode=pre_encode)
return frames, temp_cam_id
def _get_robot_states(self, label, frame_ids):
all_states = np.array(label["state"])
all_cont_gripper_states = np.array(label["continuous_gripper_state"])
states = all_states[frame_ids]
cont_gripper_states = all_cont_gripper_states[frame_ids]
arm_states = states[:, :6]
assert arm_states.shape[0] == self.sequence_length
assert cont_gripper_states.shape[0] == self.sequence_length
return arm_states, cont_gripper_states
def _get_all_robot_states(self, label, frame_ids):
all_states = np.array(label["state"])
all_cont_gripper_states = np.array(label["continuous_gripper_state"])
states = all_states[frame_ids]
cont_gripper_states = all_cont_gripper_states[frame_ids]
arm_states = states[:, :6]
return arm_states, cont_gripper_states
def _get_all_actions(self, arm_states, gripper_states, accumulate_action):
action_num = arm_states.shape[0] - 1
action = np.zeros((action_num, self.action_dim))
if accumulate_action:
first_xyz = arm_states[0, 0:3]
first_rpy = arm_states[0, 3:6]
first_rotm = euler2rotm(first_rpy)
for k in range(1, action_num + 1):
curr_xyz = arm_states[k, 0:3]
curr_rpy = arm_states[k, 3:6]
curr_gripper = gripper_states[k]
curr_rotm = euler2rotm(curr_rpy)
rel_xyz = np.dot(first_rotm.T, curr_xyz - first_xyz)
rel_rotm = first_rotm.T @ curr_rotm
rel_rpy = rotm2euler(rel_rotm)
action[k - 1, 0:3] = rel_xyz
action[k - 1, 3:6] = rel_rpy
action[k - 1, 6] = curr_gripper
else:
for k in range(1, action_num + 1):
prev_xyz = arm_states[k - 1, 0:3]
prev_rpy = arm_states[k - 1, 3:6]
prev_rotm = euler2rotm(prev_rpy)
curr_xyz = arm_states[k, 0:3]
curr_rpy = arm_states[k, 3:6]
curr_gripper = gripper_states[k]
curr_rotm = euler2rotm(curr_rpy)
rel_xyz = np.dot(prev_rotm.T, curr_xyz - prev_xyz)
rel_rotm = prev_rotm.T @ curr_rotm
rel_rpy = rotm2euler(rel_rotm)
action[k - 1, 0:3] = rel_xyz
action[k - 1, 3:6] = rel_rpy
action[k - 1, 6] = curr_gripper
return torch.from_numpy(action) # (l - 1, act_dim)
def _get_actions(self, arm_states, gripper_states, accumulate_action):
action = np.zeros((self.sequence_length - 1, self.action_dim))
if accumulate_action:
first_xyz = arm_states[0, 0:3]
first_rpy = arm_states[0, 3:6]
first_rotm = euler2rotm(first_rpy)
for k in range(1, self.sequence_length):
curr_xyz = arm_states[k, 0:3]
curr_rpy = arm_states[k, 3:6]
curr_gripper = gripper_states[k]
curr_rotm = euler2rotm(curr_rpy)
rel_xyz = np.dot(first_rotm.T, curr_xyz - first_xyz)
rel_rotm = first_rotm.T @ curr_rotm
rel_rpy = rotm2euler(rel_rotm)
action[k - 1, 0:3] = rel_xyz
action[k - 1, 3:6] = rel_rpy
action[k - 1, 6] = curr_gripper
else:
for k in range(1, self.sequence_length):
prev_xyz = arm_states[k - 1, 0:3]
prev_rpy = arm_states[k - 1, 3:6]
prev_rotm = euler2rotm(prev_rpy)
curr_xyz = arm_states[k, 0:3]
curr_rpy = arm_states[k, 3:6]
curr_gripper = gripper_states[k]
curr_rotm = euler2rotm(curr_rpy)
rel_xyz = np.dot(prev_rotm.T, curr_xyz - prev_xyz)
rel_rotm = prev_rotm.T @ curr_rotm
rel_rpy = rotm2euler(rel_rotm)
action[k - 1, 0:3] = rel_xyz
action[k - 1, 3:6] = rel_rpy
action[k - 1, 6] = curr_gripper
return torch.from_numpy(action) # (l - 1, act_dim)
def __getitem__(self, index, cam_id=None, return_video=False):
if self.mode != "train":
np.random.seed(index)
random.seed(index)
try:
sample = self.samples[index]
ann_file = sample["ann_file"]
frame_ids = sample["frame_ids"]
with open(ann_file, "r") as f:
label = json.load(f)
arm_states, gripper_states = self._get_robot_states(label, frame_ids)
actions = self._get_actions(arm_states, gripper_states, self.accumulate_action)
actions *= self.c_act_scaler
data = dict()
if self.load_action:
data["action"] = actions.float()
if self.pre_encode:
raise NotImplementedError("Pre-encoded videos are not supported for this dataset.")
else:
video, cam_id = self._get_obs(label, frame_ids, cam_id, pre_encode=False)
video = video.permute(1, 0, 2, 3) # Rearrange from [T, C, H, W] to [C, T, H, W]
data["video"] = video.to(dtype=torch.uint8)
data["annotation_file"] = ann_file
# NOTE: __key__ is used to uniquely identify the sample, required for callback functions
if "episode_id" in label:
data["__key__"] = label["episode_id"]
else:
data["__key__"] = label["original_path"]
# Just add these to fit the interface
if self.load_t5_embeddings:
t5_embedding_path = ann_file.replace(".json", ".pickle")
with open(t5_embedding_path, "rb") as f:
data["t5_text_embeddings"] = torch.from_numpy(pickle.load(f)[0])
else:
data["t5_text_embeddings"] = torch.zeros(512, 1024, dtype=torch.bfloat16)
data["t5_text_mask"] = torch.ones(512, dtype=torch.int64)
data["fps"] = 4
data["image_size"] = 256 * torch.ones(4) # TODO: Does this matter?
data["num_frames"] = self.sequence_length
data["padding_mask"] = torch.zeros(1, 256, 256)
return data
except Exception:
warnings.warn(
f"Invalid data encountered: {self.samples[index]['ann_file']}. Skipped "
f"(by randomly sampling another sample in the same dataset)."
)
warnings.warn("FULL TRACEBACK:")
warnings.warn(traceback.format_exc())
self.wrong_number += 1
print(self.wrong_number)
return self[np.random.randint(len(self.samples))]
if __name__ == "__main__":
dataset = Dataset_3D(
train_annotation_path="datasets/bridge/annotation/train",
val_annotation_path="datasets/bridge/annotation/val",
test_annotation_path="datasets/bridge/annotation/test",
video_path="datasets/bridge/",
sequence_interval=1,
num_frames=2,
cam_ids=[0],
accumulate_action=False,
video_size=[256, 320],
val_start_frame_interval=1,
mode="train",
load_t5_embeddings=True,
)
indices = [0, 13, 200, -1]
for idx in indices:
print(
(
f"{idx=} "
f"{dataset[idx]['video'].sum()=}\n"
f"{dataset[idx]['video'].shape=}\n"
f"{dataset[idx]['video_name']=}\n"
f"{dataset[idx]['action'].sum()=}\n"
"---"
)
)
from IPython import embed
embed()
|