File size: 6,633 Bytes
b6af722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Run this command to interactively debug:
PYTHONPATH=. python cosmos_predict1/diffusion/posttrain/datasets/dataset_3D.py

Adapted from:
https://github.com/bytedance/IRASim/blob/main/dataset/dataset_3D.py
"""

import json
import pickle
import random
import traceback
import warnings

import numpy as np
import torch

from cosmos_predict1.diffusion.training.datasets.dataset_3D import Dataset_3D
from cosmos_predict1.utils import log


class Dataset_3DBinary(Dataset_3D):
    def __init__(
        self,
        train_annotation_path,
        val_annotation_path,
        test_annotation_path,
        video_path,
        sequence_interval,
        num_frames,
        cam_ids,
        accumulate_action,
        video_size,
        val_start_frame_interval,
        debug=False,
        normalize=False,
        pre_encode=False,
        do_evaluate=False,
        load_t5_embeddings=False,
        load_action=True,
        mode="train",
    ):
        """Dataset class for loading 3D robot action-conditional data.

        This dataset loads robot trajectories consisting of RGB video frames, robot states
        (arm positions and binary gripper states), and computes relative actions between
        consecutive frames.
        """

        super().__init__(
            train_annotation_path=train_annotation_path,
            val_annotation_path=val_annotation_path,
            test_annotation_path=test_annotation_path,
            video_path=video_path,
            sequence_interval=sequence_interval,
            num_frames=num_frames,
            cam_ids=cam_ids,
            accumulate_action=accumulate_action,
            video_size=video_size,
            val_start_frame_interval=val_start_frame_interval,
            debug=debug,
            normalize=normalize,
            pre_encode=pre_encode,
            do_evaluate=do_evaluate,
            load_t5_embeddings=load_t5_embeddings,
            load_action=load_action,
            mode=mode,
        )

        log.info("Dataset_3DBinary: in this dataset, we binarize the gripper state to 0 or 1.")

    def _get_json_action(self, label, frame_ids):
        all_action = np.array(label["action"])
        actions = all_action[frame_ids[:-1]]
        return torch.from_numpy(actions)

    def __getitem__(self, index, cam_id=None, return_video=False):
        if self.mode != "train":
            np.random.seed(index)
            random.seed(index)

        try:
            sample = self.samples[index]
            ann_file = sample["ann_file"]
            frame_ids = sample["frame_ids"]
            with open(ann_file, "r") as f:
                label = json.load(f)
            arm_states, gripper_states = self._get_robot_states(label, frame_ids)
            actions = self._get_actions(arm_states, gripper_states, self.accumulate_action)
            actions *= self.c_act_scaler

            data = dict()
            if self.load_action:
                data["action"] = actions.float()
                json_action = self._get_json_action(label, frame_ids).float()
                json_action[:, :6] = data["action"][:, :6]
                data["action"] = json_action

            if self.pre_encode:
                raise NotImplementedError("Pre-encoded videos are not supported for this dataset.")
            else:
                video, cam_id = self._get_obs(label, frame_ids, cam_id, pre_encode=False)
                video = video.permute(1, 0, 2, 3)  # Rearrange from [T, C, H, W] to [C, T, H, W]
                data["video"] = video.to(dtype=torch.uint8)

            data["annotation_file"] = ann_file

            if "episode_id" in label:
                data["__key__"] = label["episode_id"]
            else:
                data["__key__"] = label["original_path"]

            # Just add these to fit the interface
            if self.load_t5_embeddings:
                t5_embedding_path = ann_file.replace(".json", ".pickle")
                with open(t5_embedding_path, "rb") as f:
                    data["t5_text_embeddings"] = torch.from_numpy(pickle.load(f)[0])
            else:
                data["t5_text_embeddings"] = torch.zeros(512, 1024, dtype=torch.bfloat16)
            data["t5_text_mask"] = torch.ones(512, dtype=torch.int64)
            data["fps"] = 4
            data["image_size"] = 256 * torch.ones(4)  # TODO: Does this matter?
            data["num_frames"] = self.sequence_length
            data["padding_mask"] = torch.zeros(1, 256, 256)

            return data
        except Exception:
            warnings.warn(
                f"Invalid data encountered: {self.samples[index]['ann_file']}. Skipped "
                f"(by randomly sampling another sample in the same dataset)."
            )
            warnings.warn("FULL TRACEBACK:")
            warnings.warn(traceback.format_exc())
            self.wrong_number += 1
            print(self.wrong_number)
            return self[np.random.randint(len(self.samples))]


if __name__ == "__main__":
    dataset = Dataset_3DBinary(
        train_annotation_path="datasets/bridge/annotation/train",
        val_annotation_path="datasets/bridge/annotation/val",
        test_annotation_path="datasets/bridge/annotation/test",
        video_path="datasets/bridge/",
        sequence_interval=1,
        num_frames=2,
        cam_ids=[0],
        accumulate_action=False,
        video_size=[256, 320],
        val_start_frame_interval=1,
        mode="train",
        load_t5_embeddings=True,
    )

    indices = [0, 13, 200, -1]
    for idx in indices:
        print(
            (
                f"{idx=} "
                f"{dataset[idx]['video'].sum()=}\n"
                f"{dataset[idx]['video'].shape=}\n"
                f"{dataset[idx]['video_name']=}\n"
                f"{dataset[idx]['action'].sum()=}\n"
                f"{dataset[idx]['json_action'].sum()=}\n"
                "---"
            )
        )

    from IPython import embed

    embed()