Spaces:
Build error
Build error
File size: 9,058 Bytes
b6af722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Adapted from:
https://github.com/bytedance/IRASim/blob/main/dataset/dataset_util.py
"""
import base64
import math
import os
from io import BytesIO
import numpy as np
import torch
import torch.distributed as dist
import torchvision.transforms.functional as F
from PIL import Image
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)
out: (M, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float32)
omega /= embed_dim / 2.0
omega = 1.0 / 10000**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
return emb
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
assert embed_dim % 2 == 0
# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
return emb
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
"""
grid_size: int of the grid height and width
return:
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
"""
grid_h = np.arange(grid_size, dtype=np.float32)
grid_w = np.arange(grid_size, dtype=np.float32)
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
grid = grid.reshape([2, 1, grid_size, grid_size])
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
if cls_token:
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
return pos_embed
def b64_2_img(data: str):
image_b64 = base64.b64decode(data)
img = Image.open(BytesIO(image_b64)).convert("RGB")
return img
def get_continuous_action(d_acts, c_act_max, c_act_min, n_bins):
c_act_max = c_act_max.to(d_acts.device)
c_act_min = c_act_min.to(d_acts.device)
c_acts = d_acts / (n_bins - 1) * (c_act_max - c_act_min) + c_act_min
return c_acts
def alpha2rotm(a):
"""Alpha euler angle to rotation matrix."""
rotm = np.array([[1, 0, 0], [0, np.cos(a), -np.sin(a)], [0, np.sin(a), np.cos(a)]])
return rotm
def beta2rotm(b):
"""Beta euler angle to rotation matrix."""
rotm = np.array([[np.cos(b), 0, np.sin(b)], [0, 1, 0], [-np.sin(b), 0, np.cos(b)]])
return rotm
def gamma2rotm(c):
"""Gamma euler angle to rotation matrix."""
rotm = np.array([[np.cos(c), -np.sin(c), 0], [np.sin(c), np.cos(c), 0], [0, 0, 1]])
return rotm
def euler2rotm(euler_angles):
"""Euler angle (ZYX) to rotation matrix."""
alpha = euler_angles[0]
beta = euler_angles[1]
gamma = euler_angles[2]
rotm_a = alpha2rotm(alpha)
rotm_b = beta2rotm(beta)
rotm_c = gamma2rotm(gamma)
rotm = rotm_c @ rotm_b @ rotm_a
return rotm
def isRotm(R):
# Checks if a matrix is a valid rotation matrix.
# Forked from Andy Zeng
Rt = np.transpose(R)
shouldBeIdentity = np.dot(Rt, R)
I = np.identity(3, dtype=R.dtype)
n = np.linalg.norm(I - shouldBeIdentity)
return n < 1e-6
def rotm2euler(R):
# Forked from: https://learnopencv.com/rotation-matrix-to-euler-angles/
# R = Rz * Ry * Rx
assert isRotm(R)
sy = math.sqrt(R[0, 0] * R[0, 0] + R[1, 0] * R[1, 0])
singular = sy < 1e-6
if not singular:
x = math.atan2(R[2, 1], R[2, 2])
y = math.atan2(-R[2, 0], sy)
z = math.atan2(R[1, 0], R[0, 0])
else:
x = math.atan2(-R[1, 2], R[1, 1])
y = math.atan2(-R[2, 0], sy)
z = 0
# (-pi , pi]
while x > np.pi:
x -= 2 * np.pi
while x <= -np.pi:
x += 2 * np.pi
while y > np.pi:
y -= 2 * np.pi
while y <= -np.pi:
y += 2 * np.pi
while z > np.pi:
z -= 2 * np.pi
while z <= -np.pi:
z += 2 * np.pi
return np.array([x, y, z])
def get_converted_fp32_paths(deepspeed_ckpt_path):
deepspeed_ckpt_path = deepspeed_ckpt_path.rstrip("/")
ckpt_dir = os.path.dirname(deepspeed_ckpt_path)
ckpt_name = os.path.basename(deepspeed_ckpt_path)
fp32_ckpt_name = f"{ckpt_name}.fp32.pt"
converted_path = os.path.join(ckpt_dir, fp32_ckpt_name)
return converted_path
def quat2rotm(quat):
"""Quaternion to rotation matrix.
Args:
quat (4, numpy array): quaternion x, y, z, w
Returns:
rotm (3x3 numpy array): rotation matrix
"""
w = quat[3]
x = quat[0]
y = quat[1]
z = quat[2]
s = w * w + x * x + y * y + z * z
rotm = np.array(
[
[1 - 2 * (y * y + z * z) / s, 2 * (x * y - z * w) / s, 2 * (x * z + y * w) / s],
[2 * (x * y + z * w) / s, 1 - 2 * (x * x + z * z) / s, 2 * (y * z - x * w) / s],
[2 * (x * z - y * w) / s, 2 * (y * z + x * w) / s, 1 - 2 * (x * x + y * y) / s],
]
)
return rotm
class Resize_Preprocess:
def __init__(self, size):
"""
Initialize the preprocessing class with the target size.
Args:
size (tuple): The target height and width as a tuple (height, width).
"""
self.size = size
def __call__(self, video_frames):
"""
Apply the transformation to each frame in the video.
Args:
video_frames (torch.Tensor): A tensor representing a batch of video frames.
Returns:
torch.Tensor: The transformed video frames.
"""
# Resize each frame in the video
resized_frames = torch.stack([F.resize(frame, self.size, antialias=True) for frame in video_frames])
return resized_frames
class Preprocess:
def __init__(self, size):
self.size = size
def __call__(self, clip):
clip = Preprocess.resize_scale(clip, self.size[0], self.size[1], interpolation_mode="bilinear")
return clip
def __repr__(self) -> str:
return f"{self.__class__.__name__}(size={self.size})"
@staticmethod
def resize_scale(clip, target_height, target_width, interpolation_mode):
target_ratio = target_height / target_width
H = clip.size(-2)
W = clip.size(-1)
clip_ratio = H / W
if clip_ratio > target_ratio:
scale_ = target_width / W
else:
scale_ = target_height / H
return torch.nn.functional.interpolate(clip, scale_factor=scale_, mode=interpolation_mode, align_corners=False)
class ToTensorVideo:
"""
Convert tensor data type from uint8 to float, divide value by 255.0 and
permute the dimensions of clip tensor
"""
def __init__(self):
pass
def __call__(self, clip):
"""
Args:
clip (torch.tensor, dtype=torch.uint8): Size is (T, C, H, W)
Return:
clip (torch.tensor, dtype=torch.float): Size is (T, C, H, W)
"""
return to_tensor(clip)
def __repr__(self) -> str:
return self.__class__.__name__
def to_tensor(clip):
"""
Convert tensor data type from uint8 to float, divide value by 255.0 and
permute the dimensions of clip tensor
Args:
clip (torch.tensor, dtype=torch.uint8): Size is (T, C, H, W)
Return:
clip (torch.tensor, dtype=torch.float): Size is (T, C, H, W)
"""
_is_tensor_video_clip(clip)
if not clip.dtype == torch.uint8:
raise TypeError("clip tensor should have data type uint8. Got %s" % str(clip.dtype))
# return clip.float().permute(3, 0, 1, 2) / 255.0
return clip.float() / 255.0
def _is_tensor_video_clip(clip):
if not torch.is_tensor(clip):
raise TypeError("clip should be Tensor. Got %s" % type(clip))
if not clip.ndimension() == 4:
raise ValueError("clip should be 4D. Got %dD" % clip.dim())
return True
|