Spaces:
Build error
Build error
File size: 30,469 Bytes
b6af722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Any, Callable, Dict, List, Mapping, Optional, Tuple, Union
import amp_C
import torch
from apex.multi_tensor_apply import multi_tensor_applier
from einops import rearrange
from megatron.core import parallel_state
from torch import Tensor
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
from torch.distributed import broadcast_object_list, get_process_group_ranks
from torch.distributed.utils import _verify_param_shape_across_processes
from cosmos_predict1.diffusion.modules.res_sampler import COMMON_SOLVER_OPTIONS
from cosmos_predict1.diffusion.training.conditioner import BaseVideoCondition, DataType
from cosmos_predict1.diffusion.training.context_parallel import cat_outputs_cp, split_inputs_cp
from cosmos_predict1.diffusion.training.models.model_image import CosmosCondition
from cosmos_predict1.diffusion.training.models.model_image import DiffusionModel as ImageModel
from cosmos_predict1.diffusion.training.models.model_image import diffusion_fsdp_class_decorator
from cosmos_predict1.utils import distributed, log, misc
l2_norm_impl = amp_C.multi_tensor_l2norm
multi_tensor_scale_impl = amp_C.multi_tensor_scale
# key to check if the video data is normalized or image data is converted to video data
# to avoid apply normalization or augment image dimension multiple times
# It is due to we do not have normalization and augment image dimension in the dataloader and move it to the model
IS_PREPROCESSED_KEY = "is_preprocessed"
def robust_broadcast(tensor: torch.Tensor, src: int, pg, is_check_shape: bool = False) -> torch.Tensor:
"""
Perform a robust broadcast operation that works regardless of tensor shapes on different ranks.
Args:
tensor (torch.Tensor): The tensor to broadcast (on src rank) or receive (on other ranks).
src (int): The source rank for the broadcast. Defaults to 0.
Returns:
torch.Tensor: The broadcasted tensor on all ranks.
"""
# First, broadcast the shape of the tensor
if distributed.get_rank() == src:
shape = torch.tensor(tensor.shape).cuda()
else:
shape = torch.empty(tensor.dim(), dtype=torch.long).cuda()
if is_check_shape:
_verify_param_shape_across_processes(pg, [shape])
torch.distributed.broadcast(shape, src, group=pg)
# Resize the tensor on non-src ranks if necessary
if distributed.get_rank() != src:
tensor = tensor.new_empty(shape.tolist()).type_as(tensor)
# Now broadcast the tensor data
torch.distributed.broadcast(tensor, src, group=pg)
return tensor
def _broadcast(item: torch.Tensor | str | None, to_tp: bool = True, to_cp: bool = True) -> torch.Tensor | str | None:
"""
Broadcast the item from the minimum rank in the specified group(s).
Since global rank = tp_rank + cp_rank * tp_size + ...
First broadcast in the tp_group and then in the cp_group will
ensure that the item is broadcasted across ranks in cp_group and tp_group.
Parameters:
- item: The item to broadcast (can be a torch.Tensor, str, or None).
- to_tp: Whether to broadcast to the tensor model parallel group.
- to_cp: Whether to broadcast to the context parallel group.
"""
if not parallel_state.is_initialized():
return item
tp_group = parallel_state.get_tensor_model_parallel_group()
cp_group = parallel_state.get_context_parallel_group()
to_tp = to_tp and parallel_state.get_tensor_model_parallel_world_size() > 1
to_cp = to_cp and parallel_state.get_context_parallel_world_size() > 1
if to_tp:
min_tp_rank = min(get_process_group_ranks(tp_group))
if to_cp:
min_cp_rank = min(get_process_group_ranks(cp_group))
if isinstance(item, torch.Tensor): # assume the device is cuda
# log.info(f"{item.shape}", rank0_only=False)
if to_tp:
# torch.distributed.broadcast(item, min_tp_rank, group=tp_group)
item = robust_broadcast(item, min_tp_rank, tp_group)
if to_cp:
# torch.distributed.broadcast(item, min_cp_rank, group=cp_group)
item = robust_broadcast(item, min_cp_rank, cp_group)
elif item is not None:
broadcastable_list = [item]
if to_tp:
# log.info(f"{broadcastable_list}", rank0_only=False)
broadcast_object_list(broadcastable_list, min_tp_rank, group=tp_group)
if to_cp:
broadcast_object_list(broadcastable_list, min_cp_rank, group=cp_group)
item = broadcastable_list[0]
return item
def broadcast_condition(condition: BaseVideoCondition, to_tp: bool = True, to_cp: bool = True) -> BaseVideoCondition:
condition_kwargs = {}
for k, v in condition.to_dict().items():
if isinstance(v, torch.Tensor):
assert not v.requires_grad, f"{k} requires gradient. the current impl does not support it"
condition_kwargs[k] = _broadcast(v, to_tp=to_tp, to_cp=to_cp)
condition = type(condition)(**condition_kwargs)
return condition
class DiffusionModel(ImageModel):
def __init__(self, config):
super().__init__(config)
# Initialize trained_data_record with defaultdict, key: image, video, iteration
self.trained_data_record = {
"image": 0,
"video": 0,
"iteration": 0,
}
if parallel_state.is_initialized():
self.data_parallel_size = parallel_state.get_data_parallel_world_size()
else:
self.data_parallel_size = 1
if self.config.adjust_video_noise:
self.video_noise_multiplier = math.sqrt(self.state_shape[1])
else:
self.video_noise_multiplier = 1.0
def setup_data_key(self) -> None:
self.input_data_key = self.config.input_data_key # by default it is video key for Video diffusion model
self.input_image_key = self.config.input_image_key
def is_image_batch(self, data_batch: dict[str, Tensor]) -> bool:
"""We hanlde two types of data_batch. One comes from a joint_dataloader where "dataset_name" can be used to differenciate image_batch and video_batch.
Another comes from a dataloader which we by default assumes as video_data for video model training.
"""
is_image = self.input_image_key in data_batch
is_video = self.input_data_key in data_batch
assert (
is_image != is_video
), "Only one of the input_image_key or input_data_key should be present in the data_batch."
return is_image
def draw_training_sigma_and_epsilon(self, size: int, condition: BaseVideoCondition) -> Tensor:
sigma_B, epsilon = super().draw_training_sigma_and_epsilon(size, condition)
is_video_batch = condition.data_type == DataType.VIDEO
multiplier = self.video_noise_multiplier if is_video_batch else 1
sigma_B = _broadcast(sigma_B * multiplier, to_tp=True, to_cp=is_video_batch)
epsilon = _broadcast(epsilon, to_tp=True, to_cp=is_video_batch)
return sigma_B, epsilon
@torch.no_grad()
def validation_step(
self, data: dict[str, torch.Tensor], iteration: int
) -> tuple[dict[str, torch.Tensor], torch.Tensor]:
"""
save generated videos
"""
raw_data, x0, condition = self.get_data_and_condition(data)
guidance = data["guidance"]
data = misc.to(data, **self.tensor_kwargs)
sample = self.generate_samples_from_batch(
data,
guidance=guidance,
# make sure no mismatch and also works for cp
state_shape=x0.shape[1:],
n_sample=x0.shape[0],
)
sample = self.decode(sample)
gt = raw_data
caption = data["ai_caption"]
return {"gt": gt, "result": sample, "caption": caption}, torch.tensor([0]).to(**self.tensor_kwargs)
def training_step(self, data_batch: Dict[str, Tensor], iteration: int) -> Tuple[Dict[str, Tensor] | Tensor]:
input_key = self.input_data_key # by default it is video key
if self.is_image_batch(data_batch):
input_key = self.input_image_key
batch_size = data_batch[input_key].shape[0]
self.trained_data_record["image" if self.is_image_batch(data_batch) else "video"] += (
batch_size * self.data_parallel_size
)
self.trained_data_record["iteration"] += 1
return super().training_step(data_batch, iteration)
def state_dict(self) -> Dict[str, Any]:
state_dict = super().state_dict()
state_dict["trained_data_record"] = self.trained_data_record
return state_dict
def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True, assign: bool = False):
if "trained_data_record" in state_dict and hasattr(self, "trained_data_record"):
trained_data_record = state_dict.pop("trained_data_record")
if trained_data_record:
assert set(trained_data_record.keys()) == set(self.trained_data_record.keys())
for k, v in trained_data_record.items():
self.trained_data_record[k] = v
else:
log.warning("trained_data_record not found in the state_dict.")
return super().load_state_dict(state_dict, strict, assign)
def _normalize_video_databatch_inplace(self, data_batch: dict[str, Tensor], input_key: str = None) -> None:
"""
Normalizes video data in-place on a CUDA device to reduce data loading overhead.
This function modifies the video data tensor within the provided data_batch dictionary
in-place, scaling the uint8 data from the range [0, 255] to the normalized range [-1, 1].
Warning:
A warning is issued if the data has not been previously normalized.
Args:
data_batch (dict[str, Tensor]): A dictionary containing the video data under a specific key.
This tensor is expected to be on a CUDA device and have dtype of torch.uint8.
Side Effects:
Modifies the 'input_data_key' tensor within the 'data_batch' dictionary in-place.
Note:
This operation is performed directly on the CUDA device to avoid the overhead associated
with moving data to/from the GPU. Ensure that the tensor is already on the appropriate device
and has the correct dtype (torch.uint8) to avoid unexpected behaviors.
"""
input_key = self.input_data_key if input_key is None else input_key
# only handle video batch
if input_key in data_batch:
# Check if the data has already been normalized and avoid re-normalizing
if IS_PREPROCESSED_KEY in data_batch and data_batch[IS_PREPROCESSED_KEY] is True:
assert torch.is_floating_point(data_batch[input_key]), "Video data is not in float format."
assert torch.all(
(data_batch[input_key] >= -1.0001) & (data_batch[input_key] <= 1.0001)
), f"Video data is not in the range [-1, 1]. get data range [{data_batch[input_key].min()}, {data_batch[input_key].max()}]"
else:
assert data_batch[input_key].dtype == torch.uint8, "Video data is not in uint8 format."
data_batch[input_key] = data_batch[input_key].to(**self.tensor_kwargs) / 127.5 - 1.0
data_batch[IS_PREPROCESSED_KEY] = True
def _augment_image_dim_inplace(self, data_batch: dict[str, Tensor], input_key: str = None) -> None:
input_key = self.input_image_key if input_key is None else input_key
if input_key in data_batch:
# Check if the data has already been augmented and avoid re-augmenting
if IS_PREPROCESSED_KEY in data_batch and data_batch[IS_PREPROCESSED_KEY] is True:
assert (
data_batch[input_key].shape[2] == 1
), f"Image data is claimed be augmented while its shape is {data_batch[input_key].shape}"
return
else:
data_batch[input_key] = rearrange(data_batch[input_key], "b c h w -> b c 1 h w").contiguous()
data_batch[IS_PREPROCESSED_KEY] = True
def get_data_and_condition(self, data_batch: dict[str, Tensor]) -> Tuple[Tensor, BaseVideoCondition]:
self._normalize_video_databatch_inplace(data_batch)
self._augment_image_dim_inplace(data_batch)
input_key = self.input_data_key # by default it is video key
is_image_batch = self.is_image_batch(data_batch)
is_video_batch = not is_image_batch
# Broadcast data and condition across TP and CP groups.
# sort keys to make sure the order is same, IMPORTANT! otherwise, nccl will hang!
local_keys = sorted(list(data_batch.keys()))
# log.critical(f"all keys {local_keys}", rank0_only=False)
for key in local_keys:
data_batch[key] = _broadcast(data_batch[key], to_tp=True, to_cp=is_video_batch)
if is_image_batch:
input_key = self.input_image_key
# Latent state
raw_state = data_batch[input_key]
latent_state = self.encode(raw_state).contiguous()
# Condition
condition = self.conditioner(data_batch)
if is_image_batch:
condition.data_type = DataType.IMAGE
else:
condition.data_type = DataType.VIDEO
# VAE has randomness. CP/TP group should have the same encoded output.
latent_state = _broadcast(latent_state, to_tp=True, to_cp=is_video_batch)
condition = broadcast_condition(condition, to_tp=True, to_cp=is_video_batch)
return raw_state, latent_state, condition
def on_train_start(self, memory_format: torch.memory_format = torch.preserve_format) -> None:
super().on_train_start(memory_format)
if parallel_state.is_initialized() and parallel_state.get_tensor_model_parallel_world_size() > 1:
sequence_parallel = getattr(parallel_state, "sequence_parallel", False)
if sequence_parallel:
self.net.enable_sequence_parallel()
def compute_loss_with_epsilon_and_sigma(
self,
data_batch: dict[str, torch.Tensor],
x0_from_data_batch: torch.Tensor,
x0: torch.Tensor,
condition: CosmosCondition,
epsilon: torch.Tensor,
sigma: torch.Tensor,
):
if self.is_image_batch(data_batch):
# Turn off CP
self.net.disable_context_parallel()
else:
if parallel_state.is_initialized():
if parallel_state.get_context_parallel_world_size() > 1:
# Turn on CP
cp_group = parallel_state.get_context_parallel_group()
self.net.enable_context_parallel(cp_group)
log.debug("[CP] Split x0 and epsilon")
x0 = split_inputs_cp(x=x0, seq_dim=2, cp_group=self.net.cp_group)
epsilon = split_inputs_cp(x=epsilon, seq_dim=2, cp_group=self.net.cp_group)
output_batch, kendall_loss, pred_mse, edm_loss = super().compute_loss_with_epsilon_and_sigma(
data_batch, x0_from_data_batch, x0, condition, epsilon, sigma
)
if not self.is_image_batch(data_batch):
if self.loss_reduce == "sum" and parallel_state.get_context_parallel_world_size() > 1:
kendall_loss *= parallel_state.get_context_parallel_world_size()
return output_batch, kendall_loss, pred_mse, edm_loss
def get_x0_fn_from_batch(
self,
data_batch: Dict,
guidance: float = 1.5,
is_negative_prompt: bool = False,
) -> Callable:
"""
Generates a callable function `x0_fn` based on the provided data batch and guidance factor.
This function first processes the input data batch through a conditioning workflow (`conditioner`) to obtain conditioned and unconditioned states. It then defines a nested function `x0_fn` which applies a denoising operation on an input `noise_x` at a given noise level `sigma` using both the conditioned and unconditioned states.
Args:
- data_batch (Dict): A batch of data used for conditioning. The format and content of this dictionary should align with the expectations of the `self.conditioner`
- guidance (float, optional): A scalar value that modulates the influence of the conditioned state relative to the unconditioned state in the output. Defaults to 1.5.
- is_negative_prompt (bool): use negative prompt t5 in uncondition if true
Returns:
- Callable: A function `x0_fn(noise_x, sigma)` that takes two arguments, `noise_x` and `sigma`, and return x0 predictoin
The returned function is suitable for use in scenarios where a denoised state is required based on both conditioned and unconditioned inputs, with an adjustable level of guidance influence.
"""
if is_negative_prompt:
condition, uncondition = self.conditioner.get_condition_with_negative_prompt(data_batch)
else:
condition, uncondition = self.conditioner.get_condition_uncondition(data_batch)
to_cp = self.net.is_context_parallel_enabled
# For inference, check if parallel_state is initialized
if parallel_state.is_initialized():
condition = broadcast_condition(condition, to_tp=True, to_cp=to_cp)
uncondition = broadcast_condition(uncondition, to_tp=True, to_cp=to_cp)
else:
assert not to_cp, "parallel_state is not initialized, context parallel should be turned off."
def x0_fn(noise_x: torch.Tensor, sigma: torch.Tensor) -> torch.Tensor:
cond_x0 = self.denoise(noise_x, sigma, condition).x0
uncond_x0 = self.denoise(noise_x, sigma, uncondition).x0
raw_x0 = cond_x0 + guidance * (cond_x0 - uncond_x0)
if "guided_image" in data_batch:
# replacement trick that enables inpainting with base model
assert "guided_mask" in data_batch, "guided_mask should be in data_batch if guided_image is present"
guide_image = data_batch["guided_image"]
guide_mask = data_batch["guided_mask"]
raw_x0 = guide_mask * guide_image + (1 - guide_mask) * raw_x0
return raw_x0
return x0_fn
def get_x_from_clean(
self,
in_clean_img: torch.Tensor,
sigma_max: float | None,
seed: int = 1,
) -> Tensor:
"""
in_clean_img (torch.Tensor): input clean image for image-to-image/video-to-video by adding noise then denoising
sigma_max (float): maximum sigma applied to in_clean_image for image-to-image/video-to-video
"""
if in_clean_img is None:
return None
generator = torch.Generator(device=self.tensor_kwargs["device"])
generator.manual_seed(seed)
noise = torch.randn(*in_clean_img.shape, **self.tensor_kwargs, generator=generator)
if sigma_max is None:
sigma_max = self.sde.sigma_max
x_sigma_max = in_clean_img + noise * sigma_max
return x_sigma_max
def generate_samples_from_batch(
self,
data_batch: Dict,
guidance: float = 1.5,
seed: int = 1,
state_shape: Tuple | None = None,
n_sample: int | None = None,
is_negative_prompt: bool = False,
num_steps: int = 35,
solver_option: COMMON_SOLVER_OPTIONS = "2ab",
x_sigma_max: Optional[torch.Tensor] = None,
sigma_max: float | None = None,
return_noise: bool = False,
) -> Tensor | Tuple[Tensor, Tensor]:
"""
Generate samples from the batch. Based on given batch, it will automatically determine whether to generate image or video samples.
Args:
data_batch (dict): raw data batch draw from the training data loader.
iteration (int): Current iteration number.
guidance (float): guidance weights
seed (int): random seed
state_shape (tuple): shape of the state, default to self.state_shape if not provided
n_sample (int): number of samples to generate
is_negative_prompt (bool): use negative prompt t5 in uncondition if true
num_steps (int): number of steps for the diffusion process
solver_option (str): differential equation solver option, default to "2ab"~(mulitstep solver)
return_noise (bool): return the initial noise or not, used for ODE pairs generation
"""
self._normalize_video_databatch_inplace(data_batch)
self._augment_image_dim_inplace(data_batch)
is_image_batch = self.is_image_batch(data_batch)
if n_sample is None:
input_key = self.input_image_key if is_image_batch else self.input_data_key
n_sample = data_batch[input_key].shape[0]
if state_shape is None:
if is_image_batch:
state_shape = (self.state_shape[0], 1, *self.state_shape[2:]) # C,T,H,W
x0_fn = self.get_x0_fn_from_batch(data_batch, guidance, is_negative_prompt=is_negative_prompt)
x_sigma_max = (
misc.arch_invariant_rand(
(n_sample,) + tuple(state_shape),
torch.float32,
self.tensor_kwargs["device"],
seed,
)
* self.sde.sigma_max
)
if self.net.is_context_parallel_enabled:
x_sigma_max = split_inputs_cp(x=x_sigma_max, seq_dim=2, cp_group=self.net.cp_group)
samples = self.sampler(
x0_fn, x_sigma_max, num_steps=num_steps, sigma_max=self.sde.sigma_max, solver_option=solver_option
)
if self.net.is_context_parallel_enabled:
samples = cat_outputs_cp(samples, seq_dim=2, cp_group=self.net.cp_group)
if return_noise:
if self.net.is_context_parallel_enabled:
x_sigma_max = cat_outputs_cp(x_sigma_max, seq_dim=2, cp_group=self.net.cp_group)
return samples, x_sigma_max / self.sde.sigma_max
return samples
def on_after_backward(self, iteration: int = 0):
finalize_model_grads([self])
def get_grad_norm(
self,
norm_type: Union[int, float] = 2,
filter_fn: Callable[[str, torch.nn.Parameter], bool] | None = None,
) -> float:
"""Calculate the norm of gradients, handling model parallel parameters.
This function is adapted from torch.nn.utils.clip_grad.clip_grad_norm_
with added functionality to handle model parallel parameters.
Args:
norm_type (float or int): Type of norm to use. Can be 2 for L2 norm.
'inf' for infinity norm is not supported.
filter_fn (callable, optional): Function to filter parameters for norm calculation.
Takes parameter name and parameter as input, returns True if this parameter is sharded else False.
Returns:
float: Total norm of the parameters (viewed as a single vector).
Note:
- Uses NVIDIA's multi-tensor applier for efficient norm calculation.
- Handles both model parallel and non-model parallel parameters separately.
- Currently only supports L2 norm (norm_type = 2).
"""
# Get model parallel group if parallel state is initialized
if parallel_state.is_initialized():
model_parallel_group = parallel_state.get_model_parallel_group()
else:
model_parallel_group = None
# Default filter function to identify tensor parallel parameters
if filter_fn is None:
def is_tp(name, param):
return (
any(key in name for key in ["to_q.0", "to_k.0", "to_v.0", "to_out.0", "layer1", "layer2"])
and "_extra_state" not in name
)
filter_fn = is_tp
# Separate gradients into model parallel and non-model parallel
without_mp_grads_for_norm = []
with_mp_grads_for_norm = []
for name, param in self.named_parameters():
if param.grad is not None:
if filter_fn(name, param):
with_mp_grads_for_norm.append(param.grad.detach())
else:
without_mp_grads_for_norm.append(param.grad.detach())
# Only L2 norm is currently supported
if norm_type != 2.0:
raise NotImplementedError(f"Norm type {norm_type} is not supported. Only L2 norm (2.0) is implemented.")
# Calculate L2 norm using NVIDIA's multi-tensor applier
dummy_overflow_buf = torch.tensor([0], dtype=torch.int, device="cuda")
# Calculate norm for non-model parallel gradients
without_mp_grad_norm = torch.tensor([0], dtype=torch.float, device="cuda")
if without_mp_grads_for_norm:
without_mp_grad_norm, _ = multi_tensor_applier(
l2_norm_impl,
dummy_overflow_buf,
[without_mp_grads_for_norm],
False, # no per-parameter norm
)
# Calculate norm for model parallel gradients
with_mp_grad_norm = torch.tensor([0], dtype=torch.float, device="cuda")
if with_mp_grads_for_norm:
with_mp_grad_norm, _ = multi_tensor_applier(
l2_norm_impl,
dummy_overflow_buf,
[with_mp_grads_for_norm],
False, # no per-parameter norm
)
# Square the norms as we'll be summing across model parallel GPUs
total_without_mp_norm = without_mp_grad_norm**2
total_with_mp_norm = with_mp_grad_norm**2
# Sum across all model-parallel GPUs
torch.distributed.all_reduce(total_with_mp_norm, op=torch.distributed.ReduceOp.SUM, group=model_parallel_group)
# Combine norms from model parallel and non-model parallel gradients
total_norm = (total_with_mp_norm.item() + total_without_mp_norm.item()) ** 0.5
return total_norm
def clip_grad_norm_(self, max_norm: float):
"""
This function performs gradient clipping to prevent exploding gradients.
It calculates the total norm of the gradients, and if it exceeds the
specified max_norm, scales the gradients down proportionally.
Args:
max_norm (float): The maximum allowed norm for the gradients.
Returns:
torch.Tensor: The total norm of the gradients before clipping.
Note:
This implementation uses NVIDIA's multi-tensor applier for efficiency.
"""
# Collect gradients from all parameters that require gradients
grads = []
for param in self.parameters():
if param.grad is not None:
grads.append(param.grad.detach())
# Calculate the total norm of the gradients
total_norm = self.get_grad_norm()
# Compute the clipping coefficient
clip_coeff = max_norm / (total_norm + 1.0e-6)
# Apply gradient clipping if the total norm exceeds max_norm
if clip_coeff < 1.0:
dummy_overflow_buf = torch.tensor([0], dtype=torch.int, device="cuda")
# Apply the scaling to the gradients using multi_tensor_applier for efficiency
multi_tensor_applier(multi_tensor_scale_impl, dummy_overflow_buf, [grads, grads], clip_coeff)
return torch.tensor([total_norm])
def _allreduce_layernorm_grads(model: List[torch.nn.Module]):
"""
All-reduce the following layernorm grads:
- When tensor parallel is enabled, all-reduce grads of QK-layernorm
- When sequence parallel, all-reduce grads of AdaLN, t_embedder, additional_timestamp_embedder,
and affline_norm.
"""
sequence_parallel = getattr(parallel_state, "sequence_parallel", False)
if parallel_state.get_tensor_model_parallel_world_size() > 1:
grads = []
for model_chunk in model:
for name, param in model_chunk.named_parameters():
if not param.requires_grad:
continue
if "to_q.1" in name or "to_k.1" in name: # TP # Q-layernorm # K-layernorm
# grad = param.main_grad
grad = param.grad
if grad is not None:
grads.append(grad.data)
if sequence_parallel: # TP + SP
if (
"t_embedder" in name
or "adaLN_modulation" in name
or "additional_timestamp_embedder" in name
or "affline_norm" in name
or "input_hint_block" in name
or "zero_blocks" in name
):
# grad = param.main_grad
grad = param.grad
if grad is not None:
grads.append(grad.data)
if grads:
coalesced = _flatten_dense_tensors(grads)
torch.distributed.all_reduce(coalesced, group=parallel_state.get_tensor_model_parallel_group())
for buf, synced in zip(grads, _unflatten_dense_tensors(coalesced, grads)):
buf.copy_(synced)
def finalize_model_grads(model: List[torch.nn.Module]):
"""
All-reduce layernorm grads for tensor/sequence parallelism.
Reference implementation: https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/distributed/finalize_model_grads.py#L99
"""
_allreduce_layernorm_grads(model)
@diffusion_fsdp_class_decorator
class FSDPDiffusionModel(DiffusionModel):
pass
|