File size: 30,469 Bytes
b6af722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from typing import Any, Callable, Dict, List, Mapping, Optional, Tuple, Union

import amp_C
import torch
from apex.multi_tensor_apply import multi_tensor_applier
from einops import rearrange
from megatron.core import parallel_state
from torch import Tensor
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
from torch.distributed import broadcast_object_list, get_process_group_ranks
from torch.distributed.utils import _verify_param_shape_across_processes

from cosmos_predict1.diffusion.modules.res_sampler import COMMON_SOLVER_OPTIONS
from cosmos_predict1.diffusion.training.conditioner import BaseVideoCondition, DataType
from cosmos_predict1.diffusion.training.context_parallel import cat_outputs_cp, split_inputs_cp
from cosmos_predict1.diffusion.training.models.model_image import CosmosCondition
from cosmos_predict1.diffusion.training.models.model_image import DiffusionModel as ImageModel
from cosmos_predict1.diffusion.training.models.model_image import diffusion_fsdp_class_decorator
from cosmos_predict1.utils import distributed, log, misc

l2_norm_impl = amp_C.multi_tensor_l2norm
multi_tensor_scale_impl = amp_C.multi_tensor_scale

# key to check if the video data is normalized or image data is converted to video data
# to avoid apply normalization or augment image dimension multiple times
# It is due to we do not have normalization and augment image dimension in the dataloader and move it to the model
IS_PREPROCESSED_KEY = "is_preprocessed"


def robust_broadcast(tensor: torch.Tensor, src: int, pg, is_check_shape: bool = False) -> torch.Tensor:
    """
    Perform a robust broadcast operation that works regardless of tensor shapes on different ranks.

    Args:
        tensor (torch.Tensor): The tensor to broadcast (on src rank) or receive (on other ranks).
        src (int): The source rank for the broadcast. Defaults to 0.

    Returns:
        torch.Tensor: The broadcasted tensor on all ranks.
    """
    # First, broadcast the shape of the tensor
    if distributed.get_rank() == src:
        shape = torch.tensor(tensor.shape).cuda()
    else:
        shape = torch.empty(tensor.dim(), dtype=torch.long).cuda()
    if is_check_shape:
        _verify_param_shape_across_processes(pg, [shape])
    torch.distributed.broadcast(shape, src, group=pg)

    # Resize the tensor on non-src ranks if necessary
    if distributed.get_rank() != src:
        tensor = tensor.new_empty(shape.tolist()).type_as(tensor)

    # Now broadcast the tensor data
    torch.distributed.broadcast(tensor, src, group=pg)

    return tensor


def _broadcast(item: torch.Tensor | str | None, to_tp: bool = True, to_cp: bool = True) -> torch.Tensor | str | None:
    """
    Broadcast the item from the minimum rank in the specified group(s).
    Since global rank = tp_rank + cp_rank * tp_size + ...
    First broadcast in the tp_group and then in the cp_group will
    ensure that the item is broadcasted across ranks in cp_group and tp_group.

    Parameters:
    - item: The item to broadcast (can be a torch.Tensor, str, or None).
    - to_tp: Whether to broadcast to the tensor model parallel group.
    - to_cp: Whether to broadcast to the context parallel group.
    """
    if not parallel_state.is_initialized():
        return item
    tp_group = parallel_state.get_tensor_model_parallel_group()
    cp_group = parallel_state.get_context_parallel_group()

    to_tp = to_tp and parallel_state.get_tensor_model_parallel_world_size() > 1
    to_cp = to_cp and parallel_state.get_context_parallel_world_size() > 1

    if to_tp:
        min_tp_rank = min(get_process_group_ranks(tp_group))

    if to_cp:
        min_cp_rank = min(get_process_group_ranks(cp_group))

    if isinstance(item, torch.Tensor):  # assume the device is cuda
        # log.info(f"{item.shape}", rank0_only=False)
        if to_tp:
            # torch.distributed.broadcast(item, min_tp_rank, group=tp_group)
            item = robust_broadcast(item, min_tp_rank, tp_group)
        if to_cp:
            # torch.distributed.broadcast(item, min_cp_rank, group=cp_group)
            item = robust_broadcast(item, min_cp_rank, cp_group)
    elif item is not None:
        broadcastable_list = [item]
        if to_tp:
            # log.info(f"{broadcastable_list}", rank0_only=False)
            broadcast_object_list(broadcastable_list, min_tp_rank, group=tp_group)
        if to_cp:
            broadcast_object_list(broadcastable_list, min_cp_rank, group=cp_group)

        item = broadcastable_list[0]
    return item


def broadcast_condition(condition: BaseVideoCondition, to_tp: bool = True, to_cp: bool = True) -> BaseVideoCondition:
    condition_kwargs = {}
    for k, v in condition.to_dict().items():
        if isinstance(v, torch.Tensor):
            assert not v.requires_grad, f"{k} requires gradient. the current impl does not support it"
        condition_kwargs[k] = _broadcast(v, to_tp=to_tp, to_cp=to_cp)
    condition = type(condition)(**condition_kwargs)
    return condition


class DiffusionModel(ImageModel):
    def __init__(self, config):
        super().__init__(config)
        # Initialize trained_data_record with defaultdict, key: image, video, iteration
        self.trained_data_record = {
            "image": 0,
            "video": 0,
            "iteration": 0,
        }
        if parallel_state.is_initialized():
            self.data_parallel_size = parallel_state.get_data_parallel_world_size()
        else:
            self.data_parallel_size = 1

        if self.config.adjust_video_noise:
            self.video_noise_multiplier = math.sqrt(self.state_shape[1])
        else:
            self.video_noise_multiplier = 1.0

    def setup_data_key(self) -> None:
        self.input_data_key = self.config.input_data_key  # by default it is video key for Video diffusion model
        self.input_image_key = self.config.input_image_key

    def is_image_batch(self, data_batch: dict[str, Tensor]) -> bool:
        """We hanlde two types of data_batch. One comes from a joint_dataloader where "dataset_name" can be used to differenciate image_batch and video_batch.
        Another comes from a dataloader which we by default assumes as video_data for video model training.
        """
        is_image = self.input_image_key in data_batch
        is_video = self.input_data_key in data_batch
        assert (
            is_image != is_video
        ), "Only one of the input_image_key or input_data_key should be present in the data_batch."
        return is_image

    def draw_training_sigma_and_epsilon(self, size: int, condition: BaseVideoCondition) -> Tensor:
        sigma_B, epsilon = super().draw_training_sigma_and_epsilon(size, condition)
        is_video_batch = condition.data_type == DataType.VIDEO
        multiplier = self.video_noise_multiplier if is_video_batch else 1
        sigma_B = _broadcast(sigma_B * multiplier, to_tp=True, to_cp=is_video_batch)
        epsilon = _broadcast(epsilon, to_tp=True, to_cp=is_video_batch)
        return sigma_B, epsilon

    @torch.no_grad()
    def validation_step(
        self, data: dict[str, torch.Tensor], iteration: int
    ) -> tuple[dict[str, torch.Tensor], torch.Tensor]:
        """
        save generated videos
        """
        raw_data, x0, condition = self.get_data_and_condition(data)
        guidance = data["guidance"]
        data = misc.to(data, **self.tensor_kwargs)
        sample = self.generate_samples_from_batch(
            data,
            guidance=guidance,
            # make sure no mismatch and also works for cp
            state_shape=x0.shape[1:],
            n_sample=x0.shape[0],
        )
        sample = self.decode(sample)
        gt = raw_data
        caption = data["ai_caption"]
        return {"gt": gt, "result": sample, "caption": caption}, torch.tensor([0]).to(**self.tensor_kwargs)

    def training_step(self, data_batch: Dict[str, Tensor], iteration: int) -> Tuple[Dict[str, Tensor] | Tensor]:
        input_key = self.input_data_key  # by default it is video key
        if self.is_image_batch(data_batch):
            input_key = self.input_image_key
        batch_size = data_batch[input_key].shape[0]
        self.trained_data_record["image" if self.is_image_batch(data_batch) else "video"] += (
            batch_size * self.data_parallel_size
        )
        self.trained_data_record["iteration"] += 1
        return super().training_step(data_batch, iteration)

    def state_dict(self) -> Dict[str, Any]:
        state_dict = super().state_dict()
        state_dict["trained_data_record"] = self.trained_data_record
        return state_dict

    def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True, assign: bool = False):
        if "trained_data_record" in state_dict and hasattr(self, "trained_data_record"):
            trained_data_record = state_dict.pop("trained_data_record")
            if trained_data_record:
                assert set(trained_data_record.keys()) == set(self.trained_data_record.keys())
                for k, v in trained_data_record.items():
                    self.trained_data_record[k] = v
        else:
            log.warning("trained_data_record not found in the state_dict.")
        return super().load_state_dict(state_dict, strict, assign)

    def _normalize_video_databatch_inplace(self, data_batch: dict[str, Tensor], input_key: str = None) -> None:
        """
        Normalizes video data in-place on a CUDA device to reduce data loading overhead.

        This function modifies the video data tensor within the provided data_batch dictionary
        in-place, scaling the uint8 data from the range [0, 255] to the normalized range [-1, 1].

        Warning:
            A warning is issued if the data has not been previously normalized.

        Args:
            data_batch (dict[str, Tensor]): A dictionary containing the video data under a specific key.
                This tensor is expected to be on a CUDA device and have dtype of torch.uint8.

        Side Effects:
            Modifies the 'input_data_key' tensor within the 'data_batch' dictionary in-place.

        Note:
            This operation is performed directly on the CUDA device to avoid the overhead associated
            with moving data to/from the GPU. Ensure that the tensor is already on the appropriate device
            and has the correct dtype (torch.uint8) to avoid unexpected behaviors.
        """
        input_key = self.input_data_key if input_key is None else input_key
        # only handle video batch
        if input_key in data_batch:
            # Check if the data has already been normalized and avoid re-normalizing
            if IS_PREPROCESSED_KEY in data_batch and data_batch[IS_PREPROCESSED_KEY] is True:
                assert torch.is_floating_point(data_batch[input_key]), "Video data is not in float format."
                assert torch.all(
                    (data_batch[input_key] >= -1.0001) & (data_batch[input_key] <= 1.0001)
                ), f"Video data is not in the range [-1, 1]. get data range [{data_batch[input_key].min()}, {data_batch[input_key].max()}]"
            else:
                assert data_batch[input_key].dtype == torch.uint8, "Video data is not in uint8 format."
                data_batch[input_key] = data_batch[input_key].to(**self.tensor_kwargs) / 127.5 - 1.0
                data_batch[IS_PREPROCESSED_KEY] = True

    def _augment_image_dim_inplace(self, data_batch: dict[str, Tensor], input_key: str = None) -> None:
        input_key = self.input_image_key if input_key is None else input_key
        if input_key in data_batch:
            # Check if the data has already been augmented and avoid re-augmenting
            if IS_PREPROCESSED_KEY in data_batch and data_batch[IS_PREPROCESSED_KEY] is True:
                assert (
                    data_batch[input_key].shape[2] == 1
                ), f"Image data is claimed be augmented while its shape is {data_batch[input_key].shape}"
                return
            else:
                data_batch[input_key] = rearrange(data_batch[input_key], "b c h w -> b c 1 h w").contiguous()
                data_batch[IS_PREPROCESSED_KEY] = True

    def get_data_and_condition(self, data_batch: dict[str, Tensor]) -> Tuple[Tensor, BaseVideoCondition]:
        self._normalize_video_databatch_inplace(data_batch)
        self._augment_image_dim_inplace(data_batch)
        input_key = self.input_data_key  # by default it is video key
        is_image_batch = self.is_image_batch(data_batch)
        is_video_batch = not is_image_batch

        # Broadcast data and condition across TP and CP groups.
        # sort keys to make sure the order is same, IMPORTANT! otherwise, nccl will hang!
        local_keys = sorted(list(data_batch.keys()))
        # log.critical(f"all keys {local_keys}", rank0_only=False)
        for key in local_keys:
            data_batch[key] = _broadcast(data_batch[key], to_tp=True, to_cp=is_video_batch)

        if is_image_batch:
            input_key = self.input_image_key

        # Latent state
        raw_state = data_batch[input_key]
        latent_state = self.encode(raw_state).contiguous()

        # Condition
        condition = self.conditioner(data_batch)
        if is_image_batch:
            condition.data_type = DataType.IMAGE
        else:
            condition.data_type = DataType.VIDEO

        # VAE has randomness. CP/TP group should have the same encoded output.

        latent_state = _broadcast(latent_state, to_tp=True, to_cp=is_video_batch)
        condition = broadcast_condition(condition, to_tp=True, to_cp=is_video_batch)

        return raw_state, latent_state, condition

    def on_train_start(self, memory_format: torch.memory_format = torch.preserve_format) -> None:
        super().on_train_start(memory_format)
        if parallel_state.is_initialized() and parallel_state.get_tensor_model_parallel_world_size() > 1:
            sequence_parallel = getattr(parallel_state, "sequence_parallel", False)
            if sequence_parallel:
                self.net.enable_sequence_parallel()

    def compute_loss_with_epsilon_and_sigma(
        self,
        data_batch: dict[str, torch.Tensor],
        x0_from_data_batch: torch.Tensor,
        x0: torch.Tensor,
        condition: CosmosCondition,
        epsilon: torch.Tensor,
        sigma: torch.Tensor,
    ):
        if self.is_image_batch(data_batch):
            # Turn off CP
            self.net.disable_context_parallel()
        else:
            if parallel_state.is_initialized():
                if parallel_state.get_context_parallel_world_size() > 1:
                    # Turn on CP
                    cp_group = parallel_state.get_context_parallel_group()
                    self.net.enable_context_parallel(cp_group)
                    log.debug("[CP] Split x0 and epsilon")
                    x0 = split_inputs_cp(x=x0, seq_dim=2, cp_group=self.net.cp_group)
                    epsilon = split_inputs_cp(x=epsilon, seq_dim=2, cp_group=self.net.cp_group)

        output_batch, kendall_loss, pred_mse, edm_loss = super().compute_loss_with_epsilon_and_sigma(
            data_batch, x0_from_data_batch, x0, condition, epsilon, sigma
        )
        if not self.is_image_batch(data_batch):
            if self.loss_reduce == "sum" and parallel_state.get_context_parallel_world_size() > 1:
                kendall_loss *= parallel_state.get_context_parallel_world_size()

        return output_batch, kendall_loss, pred_mse, edm_loss

    def get_x0_fn_from_batch(
        self,
        data_batch: Dict,
        guidance: float = 1.5,
        is_negative_prompt: bool = False,
    ) -> Callable:
        """
        Generates a callable function `x0_fn` based on the provided data batch and guidance factor.

        This function first processes the input data batch through a conditioning workflow (`conditioner`) to obtain conditioned and unconditioned states. It then defines a nested function `x0_fn` which applies a denoising operation on an input `noise_x` at a given noise level `sigma` using both the conditioned and unconditioned states.

        Args:
        - data_batch (Dict): A batch of data used for conditioning. The format and content of this dictionary should align with the expectations of the `self.conditioner`
        - guidance (float, optional): A scalar value that modulates the influence of the conditioned state relative to the unconditioned state in the output. Defaults to 1.5.
        - is_negative_prompt (bool): use negative prompt t5 in uncondition if true

        Returns:
        - Callable: A function `x0_fn(noise_x, sigma)` that takes two arguments, `noise_x` and `sigma`, and return x0 predictoin

        The returned function is suitable for use in scenarios where a denoised state is required based on both conditioned and unconditioned inputs, with an adjustable level of guidance influence.
        """
        if is_negative_prompt:
            condition, uncondition = self.conditioner.get_condition_with_negative_prompt(data_batch)
        else:
            condition, uncondition = self.conditioner.get_condition_uncondition(data_batch)

        to_cp = self.net.is_context_parallel_enabled
        # For inference, check if parallel_state is initialized
        if parallel_state.is_initialized():
            condition = broadcast_condition(condition, to_tp=True, to_cp=to_cp)
            uncondition = broadcast_condition(uncondition, to_tp=True, to_cp=to_cp)
        else:
            assert not to_cp, "parallel_state is not initialized, context parallel should be turned off."

        def x0_fn(noise_x: torch.Tensor, sigma: torch.Tensor) -> torch.Tensor:
            cond_x0 = self.denoise(noise_x, sigma, condition).x0
            uncond_x0 = self.denoise(noise_x, sigma, uncondition).x0
            raw_x0 = cond_x0 + guidance * (cond_x0 - uncond_x0)
            if "guided_image" in data_batch:
                # replacement trick that enables inpainting with base model
                assert "guided_mask" in data_batch, "guided_mask should be in data_batch if guided_image is present"
                guide_image = data_batch["guided_image"]
                guide_mask = data_batch["guided_mask"]
                raw_x0 = guide_mask * guide_image + (1 - guide_mask) * raw_x0
            return raw_x0

        return x0_fn

    def get_x_from_clean(
        self,
        in_clean_img: torch.Tensor,
        sigma_max: float | None,
        seed: int = 1,
    ) -> Tensor:
        """
        in_clean_img (torch.Tensor): input clean image for image-to-image/video-to-video by adding noise then denoising
        sigma_max (float): maximum sigma applied to in_clean_image for image-to-image/video-to-video
        """
        if in_clean_img is None:
            return None
        generator = torch.Generator(device=self.tensor_kwargs["device"])
        generator.manual_seed(seed)
        noise = torch.randn(*in_clean_img.shape, **self.tensor_kwargs, generator=generator)
        if sigma_max is None:
            sigma_max = self.sde.sigma_max
        x_sigma_max = in_clean_img + noise * sigma_max
        return x_sigma_max

    def generate_samples_from_batch(
        self,
        data_batch: Dict,
        guidance: float = 1.5,
        seed: int = 1,
        state_shape: Tuple | None = None,
        n_sample: int | None = None,
        is_negative_prompt: bool = False,
        num_steps: int = 35,
        solver_option: COMMON_SOLVER_OPTIONS = "2ab",
        x_sigma_max: Optional[torch.Tensor] = None,
        sigma_max: float | None = None,
        return_noise: bool = False,
    ) -> Tensor | Tuple[Tensor, Tensor]:
        """
        Generate samples from the batch. Based on given batch, it will automatically determine whether to generate image or video samples.
        Args:
            data_batch (dict): raw data batch draw from the training data loader.
            iteration (int): Current iteration number.
            guidance (float): guidance weights
            seed (int): random seed
            state_shape (tuple): shape of the state, default to self.state_shape if not provided
            n_sample (int): number of samples to generate
            is_negative_prompt (bool): use negative prompt t5 in uncondition if true
            num_steps (int): number of steps for the diffusion process
            solver_option (str): differential equation solver option, default to "2ab"~(mulitstep solver)
            return_noise (bool): return the initial noise or not, used for ODE pairs generation
        """
        self._normalize_video_databatch_inplace(data_batch)
        self._augment_image_dim_inplace(data_batch)
        is_image_batch = self.is_image_batch(data_batch)
        if n_sample is None:
            input_key = self.input_image_key if is_image_batch else self.input_data_key
            n_sample = data_batch[input_key].shape[0]
        if state_shape is None:
            if is_image_batch:
                state_shape = (self.state_shape[0], 1, *self.state_shape[2:])  # C,T,H,W

        x0_fn = self.get_x0_fn_from_batch(data_batch, guidance, is_negative_prompt=is_negative_prompt)

        x_sigma_max = (
            misc.arch_invariant_rand(
                (n_sample,) + tuple(state_shape),
                torch.float32,
                self.tensor_kwargs["device"],
                seed,
            )
            * self.sde.sigma_max
        )

        if self.net.is_context_parallel_enabled:
            x_sigma_max = split_inputs_cp(x=x_sigma_max, seq_dim=2, cp_group=self.net.cp_group)

        samples = self.sampler(
            x0_fn, x_sigma_max, num_steps=num_steps, sigma_max=self.sde.sigma_max, solver_option=solver_option
        )
        if self.net.is_context_parallel_enabled:
            samples = cat_outputs_cp(samples, seq_dim=2, cp_group=self.net.cp_group)

        if return_noise:
            if self.net.is_context_parallel_enabled:
                x_sigma_max = cat_outputs_cp(x_sigma_max, seq_dim=2, cp_group=self.net.cp_group)
            return samples, x_sigma_max / self.sde.sigma_max

        return samples

    def on_after_backward(self, iteration: int = 0):
        finalize_model_grads([self])

    def get_grad_norm(
        self,
        norm_type: Union[int, float] = 2,
        filter_fn: Callable[[str, torch.nn.Parameter], bool] | None = None,
    ) -> float:
        """Calculate the norm of gradients, handling model parallel parameters.

        This function is adapted from torch.nn.utils.clip_grad.clip_grad_norm_
        with added functionality to handle model parallel parameters.

        Args:
            norm_type (float or int): Type of norm to use. Can be 2 for L2 norm.
                'inf' for infinity norm is not supported.
            filter_fn (callable, optional): Function to filter parameters for norm calculation.
                Takes parameter name and parameter as input, returns True if this parameter is sharded else False.

        Returns:
            float: Total norm of the parameters (viewed as a single vector).

        Note:
            - Uses NVIDIA's multi-tensor applier for efficient norm calculation.
            - Handles both model parallel and non-model parallel parameters separately.
            - Currently only supports L2 norm (norm_type = 2).
        """
        # Get model parallel group if parallel state is initialized
        if parallel_state.is_initialized():
            model_parallel_group = parallel_state.get_model_parallel_group()
        else:
            model_parallel_group = None

        # Default filter function to identify tensor parallel parameters
        if filter_fn is None:

            def is_tp(name, param):
                return (
                    any(key in name for key in ["to_q.0", "to_k.0", "to_v.0", "to_out.0", "layer1", "layer2"])
                    and "_extra_state" not in name
                )

            filter_fn = is_tp

        # Separate gradients into model parallel and non-model parallel
        without_mp_grads_for_norm = []
        with_mp_grads_for_norm = []
        for name, param in self.named_parameters():
            if param.grad is not None:
                if filter_fn(name, param):
                    with_mp_grads_for_norm.append(param.grad.detach())
                else:
                    without_mp_grads_for_norm.append(param.grad.detach())

        # Only L2 norm is currently supported
        if norm_type != 2.0:
            raise NotImplementedError(f"Norm type {norm_type} is not supported. Only L2 norm (2.0) is implemented.")

        # Calculate L2 norm using NVIDIA's multi-tensor applier
        dummy_overflow_buf = torch.tensor([0], dtype=torch.int, device="cuda")

        # Calculate norm for non-model parallel gradients
        without_mp_grad_norm = torch.tensor([0], dtype=torch.float, device="cuda")
        if without_mp_grads_for_norm:
            without_mp_grad_norm, _ = multi_tensor_applier(
                l2_norm_impl,
                dummy_overflow_buf,
                [without_mp_grads_for_norm],
                False,  # no per-parameter norm
            )

        # Calculate norm for model parallel gradients
        with_mp_grad_norm = torch.tensor([0], dtype=torch.float, device="cuda")
        if with_mp_grads_for_norm:
            with_mp_grad_norm, _ = multi_tensor_applier(
                l2_norm_impl,
                dummy_overflow_buf,
                [with_mp_grads_for_norm],
                False,  # no per-parameter norm
            )

        # Square the norms as we'll be summing across model parallel GPUs
        total_without_mp_norm = without_mp_grad_norm**2
        total_with_mp_norm = with_mp_grad_norm**2

        # Sum across all model-parallel GPUs
        torch.distributed.all_reduce(total_with_mp_norm, op=torch.distributed.ReduceOp.SUM, group=model_parallel_group)

        # Combine norms from model parallel and non-model parallel gradients
        total_norm = (total_with_mp_norm.item() + total_without_mp_norm.item()) ** 0.5

        return total_norm

    def clip_grad_norm_(self, max_norm: float):
        """
        This function performs gradient clipping to prevent exploding gradients.
        It calculates the total norm of the gradients, and if it exceeds the
        specified max_norm, scales the gradients down proportionally.

        Args:
            max_norm (float): The maximum allowed norm for the gradients.

        Returns:
            torch.Tensor: The total norm of the gradients before clipping.

        Note:
            This implementation uses NVIDIA's multi-tensor applier for efficiency.
        """
        # Collect gradients from all parameters that require gradients
        grads = []
        for param in self.parameters():
            if param.grad is not None:
                grads.append(param.grad.detach())

        # Calculate the total norm of the gradients
        total_norm = self.get_grad_norm()

        # Compute the clipping coefficient
        clip_coeff = max_norm / (total_norm + 1.0e-6)

        # Apply gradient clipping if the total norm exceeds max_norm
        if clip_coeff < 1.0:
            dummy_overflow_buf = torch.tensor([0], dtype=torch.int, device="cuda")
            # Apply the scaling to the gradients using multi_tensor_applier for efficiency
            multi_tensor_applier(multi_tensor_scale_impl, dummy_overflow_buf, [grads, grads], clip_coeff)

        return torch.tensor([total_norm])


def _allreduce_layernorm_grads(model: List[torch.nn.Module]):
    """
    All-reduce the following layernorm grads:
    - When tensor parallel is enabled, all-reduce grads of QK-layernorm
    - When sequence parallel, all-reduce grads of AdaLN, t_embedder, additional_timestamp_embedder,
    and affline_norm.
    """
    sequence_parallel = getattr(parallel_state, "sequence_parallel", False)

    if parallel_state.get_tensor_model_parallel_world_size() > 1:
        grads = []
        for model_chunk in model:
            for name, param in model_chunk.named_parameters():
                if not param.requires_grad:
                    continue

                if "to_q.1" in name or "to_k.1" in name:  # TP  # Q-layernorm  # K-layernorm
                    # grad = param.main_grad
                    grad = param.grad
                    if grad is not None:
                        grads.append(grad.data)

                if sequence_parallel:  # TP + SP
                    if (
                        "t_embedder" in name
                        or "adaLN_modulation" in name
                        or "additional_timestamp_embedder" in name
                        or "affline_norm" in name
                        or "input_hint_block" in name
                        or "zero_blocks" in name
                    ):
                        # grad = param.main_grad
                        grad = param.grad
                        if grad is not None:
                            grads.append(grad.data)

        if grads:
            coalesced = _flatten_dense_tensors(grads)
            torch.distributed.all_reduce(coalesced, group=parallel_state.get_tensor_model_parallel_group())
            for buf, synced in zip(grads, _unflatten_dense_tensors(coalesced, grads)):
                buf.copy_(synced)


def finalize_model_grads(model: List[torch.nn.Module]):
    """
    All-reduce layernorm grads for tensor/sequence parallelism.
    Reference implementation: https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/distributed/finalize_model_grads.py#L99
    """

    _allreduce_layernorm_grads(model)


@diffusion_fsdp_class_decorator
class FSDPDiffusionModel(DiffusionModel):
    pass