Spaces:
Build error
Build error
File size: 44,127 Bytes
b6af722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
from contextlib import contextmanager
from dataclasses import dataclass, fields
from typing import Any, Callable, Dict, Mapping, Optional, Tuple, Type, TypeVar
import numpy as np
import torch
import torch.nn.functional as F
from megatron.core import parallel_state
from torch.distributed.fsdp import FullStateDictConfig
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp import ShardingStrategy, StateDictType
from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy
from torch.nn.modules.module import _IncompatibleKeys
from cosmos_predict1.diffusion.functional.batch_ops import batch_mul
from cosmos_predict1.diffusion.module.blocks import FourierFeatures
from cosmos_predict1.diffusion.module.pretrained_vae import BaseVAE
from cosmos_predict1.diffusion.modules.denoiser_scaling import EDMScaling
from cosmos_predict1.diffusion.modules.res_sampler import COMMON_SOLVER_OPTIONS, Sampler
from cosmos_predict1.diffusion.training.functional.loss import create_per_sample_loss_mask
from cosmos_predict1.diffusion.training.utils.fsdp_helper import apply_fsdp_checkpointing, hsdp_device_mesh
from cosmos_predict1.diffusion.training.utils.optim_instantiate import get_base_scheduler
from cosmos_predict1.diffusion.types import DenoisePrediction
from cosmos_predict1.utils import distributed, log, misc
from cosmos_predict1.utils.ema import FastEmaModelUpdater
from cosmos_predict1.utils.lazy_config import LazyDict
from cosmos_predict1.utils.lazy_config import instantiate as lazy_instantiate
from cosmos_predict1.utils.model import Model
@dataclass
class CosmosCondition:
crossattn_emb: torch.Tensor
crossattn_mask: torch.Tensor
padding_mask: Optional[torch.Tensor] = None
scalar_feature: Optional[torch.Tensor] = None
def to_dict(self) -> Dict[str, Optional[torch.Tensor]]:
return {f.name: getattr(self, f.name) for f in fields(self)}
class DiffusionModel(Model):
def __init__(self, config):
super().__init__()
self.config = config
# how many sample have been processed
self.sample_counter = 0
self.precision = {
"float32": torch.float32,
"float16": torch.float16,
"bfloat16": torch.bfloat16,
}[config.precision]
self.tensor_kwargs = {"device": "cuda", "dtype": self.precision}
log.warning(f"DiffusionModel: precision {self.precision}")
# Timer passed to network to detect slow ranks.
# 1. set data keys and data information
self.sigma_data = config.sigma_data
self.state_shape = list(config.latent_shape)
self.setup_data_key()
# 2. setup up diffusion processing and scaling~(pre-condition), sampler
self.sde = lazy_instantiate(config.sde)
self.sampler = Sampler()
self.scaling = EDMScaling(self.sigma_data)
# 3. vae
with misc.timer("DiffusionModel: set_up_vae"):
self.vae: BaseVAE = lazy_instantiate(config.vae)
assert (
self.vae.latent_ch == self.state_shape[0]
), f"latent_ch {self.vae.latent_ch} != state_shape {self.state_shape[0]}"
# 4. Set up loss options, including loss masking, loss reduce and loss scaling
self.loss_masking: Optional[Dict] = config.loss_masking
self.loss_reduce = getattr(config, "loss_reduce", "mean")
assert self.loss_reduce in ["mean", "sum"]
self.loss_scale = getattr(config, "loss_scale", 1.0)
log.critical(f"Using {self.loss_reduce} loss reduce with loss scale {self.loss_scale}")
log.critical(f"Enable loss masking: {config.loss_mask_enabled}")
# 5. diffusion neural networks part
self.set_up_model()
def setup_data_key(self) -> None:
self.input_data_key = self.config.input_data_key
def build_model(self) -> torch.nn.ModuleDict:
config = self.config
net = lazy_instantiate(config.net)
conditioner = lazy_instantiate(config.conditioner)
logvar = torch.nn.Sequential(
FourierFeatures(num_channels=128, normalize=True), torch.nn.Linear(128, 1, bias=False)
)
return torch.nn.ModuleDict(
{
"net": net,
"conditioner": conditioner,
"logvar": logvar,
}
)
@misc.timer("DiffusionModel: set_up_model")
def set_up_model(self):
config = self.config
self.model = self.build_model()
if config.ema.enabled:
with misc.timer("DiffusionModel: instantiate ema"):
config.ema.model = self.model
self.model_ema = lazy_instantiate(config.ema)
config.ema.model = None
else:
self.model_ema = None
@property
def net(self):
return self.model.net
@property
def conditioner(self):
return self.model.conditioner
def on_before_zero_grad(
self, optimizer: torch.optim.Optimizer, scheduler: torch.optim.lr_scheduler.LRScheduler, iteration: int
) -> None:
"""
update the model_ema
"""
if self.config.ema.enabled:
self.model_ema.update_average(self.model, iteration)
def on_train_start(self, memory_format: torch.memory_format = torch.preserve_format) -> None:
if self.config.ema.enabled:
self.model_ema.to(dtype=torch.float32)
if hasattr(self.vae, "reset_dtype"):
self.vae.reset_dtype()
self.model = self.model.to(memory_format=memory_format, **self.tensor_kwargs)
if hasattr(self.config, "use_torch_compile") and self.config.use_torch_compile: # compatible with old config
if torch.__version__ < "2.3":
log.warning(
"torch.compile in Pytorch version older than 2.3 doesn't work well with activation checkpointing.\n"
"It's very likely there will be no significant speedup from torch.compile.\n"
"Please use at least 24.04 Pytorch container."
)
# Increasing cache size. It's required because of the model size and dynamic input shapes resulting in
# multiple different triton kernels. For 28 TransformerBlocks, the cache limit of 256 should be enough for
# up to 9 different input shapes, as 28*9 < 256. If you have more Blocks or input shapes, and you observe
# graph breaks at each Block (detectable with torch._dynamo.explain) or warnings about
# exceeding cache limit, you may want to increase this size.
# Starting with 24.05 Pytorch container, the default value is 256 anyway.
# You can read more about it in the comments in Pytorch source code under path torch/_dynamo/cache_size.py.
torch._dynamo.config.accumulated_cache_size_limit = 256
# dynamic=False means that a separate kernel is created for each shape. It incurs higher compilation costs
# at initial iterations, but can result in more specialized and efficient kernels.
# dynamic=True currently throws errors in pytorch 2.3.
self.model.net = torch.compile(self.model.net, dynamic=False, disable=not self.config.use_torch_compile)
def compute_loss_with_epsilon_and_sigma(
self,
data_batch: dict[str, torch.Tensor],
x0_from_data_batch: torch.Tensor,
x0: torch.Tensor,
condition: CosmosCondition,
epsilon: torch.Tensor,
sigma: torch.Tensor,
):
"""
Compute loss givee epsilon and sigma
This method is responsible for computing loss give epsilon and sigma. It involves:
1. Adding noise to the input data using the SDE process.
2. Passing the noisy data through the network to generate predictions.
3. Computing the loss based on the difference between the predictions and the original data, \
considering any configured loss weighting.
Args:
data_batch (dict): raw data batch draw from the training data loader.
x0_from_data_batch: raw image/video
x0: image/video latent
condition: text condition
epsilon: noise
sigma: noise level
Returns:
tuple: A tuple containing four elements:
- dict: additional data that used to debug / logging / callbacks
- Tensor 1: kendall loss,
- Tensor 2: MSE loss,
- Tensor 3: EDM loss
Raises:
AssertionError: If the class is conditional, \
but no number of classes is specified in the network configuration.
Notes:
- The method handles different types of conditioning
- The method also supports Kendall's loss
"""
# Get the mean and stand deviation of the marginal probability distribution.
mean, std = self.sde.marginal_prob(x0, sigma)
# Generate noisy observations
xt = mean + batch_mul(std, epsilon) # corrupted data
# make prediction
model_pred = self.denoise(xt, sigma, condition)
# loss weights for different noise levels
weights_per_sigma = self.get_per_sigma_loss_weights(sigma=sigma)
# extra weight for each sample, for example, aesthetic weight, camera weight
weights_per_sample = self.get_per_sample_weight(data_batch, x0_from_data_batch.shape[0])
# extra loss mask for each sample, for example, human faces, hands
loss_mask_per_sample = self.get_per_sample_loss_mask(data_batch, x0_from_data_batch.shape, x0.shape)
pred_mse = (x0 - model_pred.x0) ** 2 * loss_mask_per_sample
edm_loss = batch_mul(pred_mse, weights_per_sigma * weights_per_sample)
if self.config.loss_add_logvar:
kendall_loss = batch_mul(edm_loss, torch.exp(-model_pred.logvar).view(-1)).flatten(
start_dim=1
) + model_pred.logvar.view(-1, 1)
else:
kendall_loss = edm_loss.flatten(start_dim=1)
output_batch = {
"x0": x0,
"xt": xt,
"sigma": sigma,
"weights_per_sigma": weights_per_sigma,
"weights_per_sample": weights_per_sample,
"loss_mask_per_sample": loss_mask_per_sample,
"condition": condition,
"model_pred": model_pred,
"mse_loss": pred_mse.mean(),
"edm_loss": edm_loss.mean(),
}
return output_batch, kendall_loss, pred_mse, edm_loss
def training_step(
self, data_batch: dict[str, torch.Tensor], iteration: int
) -> tuple[dict[str, torch.Tensor], torch.Tensor]:
"""
Performs a single training step for the diffusion model.
This method is responsible for executing one iteration of the model's training. It involves:
1. Adding noise to the input data using the SDE process.
2. Passing the noisy data through the network to generate predictions.
3. Computing the loss based on the difference between the predictions and the original data, \
considering any configured loss weighting.
Args:
data_batch (dict): raw data batch draw from the training data loader.
iteration (int): Current iteration number.
Returns:
tuple: A tuple containing two elements:
- dict: additional data that used to debug / logging / callbacks
- Tensor: The computed loss for the training step as a PyTorch Tensor.
Raises:
AssertionError: If the class is conditional, \
but no number of classes is specified in the network configuration.
Notes:
- The method handles different types of conditioning
- The method also supports Kendall's loss
"""
# Get the input data to noise and denoise~(image, video) and the corresponding conditioner.
x0_from_data_batch, x0, condition = self.get_data_and_condition(data_batch)
# Sample pertubation noise levels and N(0, 1) noises
sigma, epsilon = self.draw_training_sigma_and_epsilon(x0.size(), condition)
output_batch, kendall_loss, pred_mse, edm_loss = self.compute_loss_with_epsilon_and_sigma(
data_batch, x0_from_data_batch, x0, condition, epsilon, sigma
)
if self.loss_reduce == "mean":
kendall_loss = kendall_loss.mean() * self.loss_scale
elif self.loss_reduce == "sum":
kendall_loss = kendall_loss.sum(dim=1).mean() * self.loss_scale
else:
raise ValueError(f"Invalid loss_reduce: {self.loss_reduce}")
return output_batch, kendall_loss
def denoise(self, xt: torch.Tensor, sigma: torch.Tensor, condition: CosmosCondition) -> DenoisePrediction:
"""
Performs denoising on the input noise data, noise level, and condition
Args:
xt (torch.Tensor): The input noise data.
sigma (torch.Tensor): The noise level.
condition (CosmosCondition): conditional information, generated from self.conditioner
Returns:
DenoisePrediction: The denoised prediction, it includes clean data predicton (x0), \
noise prediction (eps_pred) and optional confidence (logvar).
"""
if getattr(self.config, "use_dummy_temporal_dim", False):
# When using video DiT model for image, we need to use a dummy temporal dimension.
xt = xt.unsqueeze(2)
xt = xt.to(**self.tensor_kwargs)
sigma = sigma.to(**self.tensor_kwargs)
# get precondition for the network
c_skip, c_out, c_in, c_noise = self.scaling(sigma=sigma)
# forward pass through the network
net_output = self.net(
x=batch_mul(c_in, xt), # Eq. 7 of https://arxiv.org/pdf/2206.00364.pdf
timesteps=c_noise, # Eq. 7 of https://arxiv.org/pdf/2206.00364.pdf
**condition.to_dict(),
)
logvar = self.model.logvar(c_noise)
x0_pred = batch_mul(c_skip, xt) + batch_mul(c_out, net_output)
# get noise prediction based on sde
eps_pred = batch_mul(xt - x0_pred, 1.0 / sigma)
if getattr(self.config, "use_dummy_temporal_dim", False):
x0_pred = x0_pred.squeeze(2)
eps_pred = eps_pred.squeeze(2)
return DenoisePrediction(x0_pred, eps_pred, logvar)
@torch.no_grad()
def encode(self, state: torch.Tensor) -> torch.Tensor:
return self.vae.encode(state) * self.sigma_data
@torch.no_grad()
def decode(self, latent: torch.Tensor) -> torch.Tensor:
return self.vae.decode(latent / self.sigma_data)
def draw_training_sigma_and_epsilon(self, x0_size: int, condition: Any) -> torch.Tensor:
del condition
batch_size = x0_size[0]
epsilon = torch.randn(x0_size, **self.tensor_kwargs)
return self.sde.sample_t(batch_size).to(**self.tensor_kwargs), epsilon
def get_data_and_condition(self, data_batch: dict[str, torch.Tensor]) -> Tuple[torch.Tensor, CosmosCondition]:
"""
processing data batch draw from data loader and return data and condition that used for denoising task
Returns:
raw_state (tensor): the image / video data that feed to vae
latent_state (tensor): nosie-free state, the vae latent state
condition (CosmosCondition): condition information for conditional generation. Generated from conditioner
"""
raw_state = data_batch[self.input_data_key]
latent_state = self.encode(raw_state)
condition = self.conditioner(data_batch)
return raw_state, latent_state, condition
def get_per_sample_weight(self, data_batch: dict[str, torch.Tensor], batch_size: int):
r"""
extra weight for each sample, for example, aesthetic weight
Args:
data_batch: raw data batch draw from the training data loader.
batch_size: int, the batch size of the input data
"""
aesthetic_cfg = getattr(self.config, "aesthetic_finetuning", None)
if (aesthetic_cfg is not None) and getattr(aesthetic_cfg, "enabled", False):
sample_weight = data_batch["aesthetic_weight"]
else:
sample_weight = torch.ones(batch_size, **self.tensor_kwargs)
camera_cfg = getattr(self.config, "camera_sample_weight", None)
if (camera_cfg is not None) and getattr(camera_cfg, "enabled", False):
sample_weight *= 1 + (data_batch["camera_attributes"][:, 1:].sum(dim=1) != 0) * (camera_cfg.weight - 1)
return sample_weight
def get_per_sample_loss_mask(self, data_batch, raw_x_shape, latent_x_shape):
"""
extra loss mask for each sample, for example, human faces, hands.
Args:
data_batch (dict): raw data batch draw from the training data loader.
raw_x_shape (tuple): shape of the input data. We need the raw_x_shape for necessary resize operation.
latent_x_shape (tuple): shape of the latent data
"""
if self.config.loss_mask_enabled:
raw_x_shape = [raw_x_shape[0], 1, *raw_x_shape[2:]]
weights = create_per_sample_loss_mask(
self.loss_masking, data_batch, raw_x_shape, torch.get_default_dtype(), "cuda"
)
return F.interpolate(weights, size=latent_x_shape[2:], mode="bilinear")
return 1.0
def get_per_sigma_loss_weights(self, sigma: torch.Tensor):
"""
Args:
sigma (tensor): noise level
Returns:
loss weights per sigma noise level
"""
return (sigma**2 + self.sigma_data**2) / (sigma * self.sigma_data) ** 2
def generate_samples(self, batch_size: int, condition: CosmosCondition) -> torch.Tensor:
"""
Generate samples with given condition. It is WITHOUT classifier-free-guidance.
Args:
batch_size (int):
condition (CosmosCondition): condition information generated from self.conditioner
"""
x_sigma_max = torch.randn(batch_size, *self.state_shape, **self.tensor_kwargs) * self.sde.sigma_max
def x0_fn(x, t):
return self.denoise(x, t, condition).x0 # ODE function
return self.sampler(x0_fn, x_sigma_max, sigma_max=self.sde.sigma_max)
def generate_cfg_samples(
self, batch_size: int, condition: CosmosCondition, uncondition: CosmosCondition, guidance=1.5
) -> torch.Tensor:
"""
Generate samples with with classifier-free-guidance.
Args:
batch_size (int):
condition (CosmosCondition): condition information generated from self.conditioner
uncondition (CosmosCondition): uncondition information, possibily generated from self.conditioner
"""
x_sigma_max = torch.randn(batch_size, *self.state_shape, **self.tensor_kwargs) * self.sde.sigma_max
def x0_fn(x, t):
cond_x0 = self.denoise(x, t, condition).x0
uncond_x0 = self.denoise(x, t, uncondition).x0
return cond_x0 + guidance * (cond_x0 - uncond_x0)
return self.sampler(x0_fn, x_sigma_max, sigma_max=self.sde.sigma_max)
def get_x0_fn_from_batch(
self,
data_batch: Dict,
guidance: float = 1.5,
is_negative_prompt: bool = False,
) -> Callable:
"""
Generates a callable function `x0_fn` based on the provided data batch and guidance factor.
This function first processes the input data batch through a conditioning workflow (`conditioner`) to obtain conditioned and unconditioned states. It then defines a nested function `x0_fn` which applies a denoising operation on an input `noise_x` at a given noise level `sigma` using both the conditioned and unconditioned states.
Args:
- data_batch (Dict): A batch of data used for conditioning. The format and content of this dictionary should align with the expectations of the `self.conditioner`
- guidance (float, optional): A scalar value that modulates the influence of the conditioned state relative to the unconditioned state in the output. Defaults to 1.5.
- is_negative_prompt (bool): use negative prompt t5 in uncondition if true
Returns:
- Callable: A function `x0_fn(noise_x, sigma)` that takes two arguments, `noise_x` and `sigma`, and return x0 predictoin
The returned function is suitable for use in scenarios where a denoised state is required based on both conditioned and unconditioned inputs, with an adjustable level of guidance influence.
"""
if is_negative_prompt:
condition, uncondition = self.conditioner.get_condition_with_negative_prompt(data_batch)
else:
condition, uncondition = self.conditioner.get_condition_uncondition(data_batch)
def x0_fn(noise_x: torch.Tensor, sigma: torch.Tensor) -> torch.Tensor:
cond_x0 = self.denoise(noise_x, sigma, condition).x0
uncond_x0 = self.denoise(noise_x, sigma, uncondition).x0
return cond_x0 + guidance * (cond_x0 - uncond_x0)
return x0_fn
def generate_samples_from_batch(
self,
data_batch: Dict,
guidance: float = 1.5,
seed: int = 1,
state_shape: Optional[Tuple] = None,
n_sample: Optional[int] = None,
is_negative_prompt: bool = False,
num_steps: int = 35,
solver_option: COMMON_SOLVER_OPTIONS = "2ab",
) -> torch.Tensor:
"""
Args:
data_batch (dict): raw data batch draw from the training data loader.
iteration (int): Current iteration number.
guidance (float): guidance weights
seed (int): random seed
state_shape (tuple): shape of the state, default to self.state_shape if not provided
n_sample (int): number of samples to generate
is_negative_prompt (bool): use negative prompt t5 in uncondition if true
num_steps (int): number of steps for the diffusion process
solver_option (str): differential equation solver option, default to "2ab"~(mulitstep solver)
"""
x0_fn = self.get_x0_fn_from_batch(data_batch, guidance, is_negative_prompt=is_negative_prompt)
batch_size = n_sample or data_batch[self.input_data_key].shape[0]
state_shape = state_shape or self.state_shape
x_sigma_max = (
misc.arch_invariant_rand(
(batch_size,) + tuple(state_shape),
torch.float32,
self.tensor_kwargs["device"],
seed,
)
* self.sde.sigma_max
)
return self.sampler(
x0_fn, x_sigma_max, sigma_max=self.sde.sigma_max, num_steps=num_steps, solver_option=solver_option
)
@torch.no_grad()
def validation_step(
self, data: dict[str, torch.Tensor], iteration: int
) -> tuple[dict[str, torch.Tensor], torch.Tensor]:
"""
Current code does nothing.
"""
return {}, torch.tensor(0).to(**self.tensor_kwargs)
@torch.no_grad()
def forward(self, xt, t, condition: CosmosCondition):
"""
Performs denoising on the input noise data, noise level, and condition
Args:
xt (torch.Tensor): The input noise data.
sigma (torch.Tensor): The noise level.
condition (CosmosCondition): conditional information, generated from self.conditioner
Returns:
DenoisePrediction: The denoised prediction, it includes clean data predicton (x0), \
noise prediction (eps_pred) and optional confidence (logvar).
"""
return self.denoise(xt, t, condition)
def init_optimizer_scheduler(
self, optimizer_config: LazyDict, scheduler_config: LazyDict
) -> tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LRScheduler]:
"""Creates the optimizer and scheduler for the model.
Args:
config_model (ModelConfig): The config object for the model.
Returns:
optimizer (torch.optim.Optimizer): The model optimizer.
scheduler (torch.optim.lr_scheduler.LRScheduler): The optimization scheduler.
"""
optimizer = lazy_instantiate(optimizer_config, model=self.model)
scheduler = get_base_scheduler(optimizer, self, scheduler_config)
return optimizer, scheduler
def state_dict(self) -> Dict[str, Any]:
"""
Returns the current state of the model as a dictionary.
Returns:
Dict: The current state of the model as a dictionary.
"""
return {
"model": self.model.state_dict(),
"ema": self.model_ema.state_dict() if self.config.ema.enabled else None,
}
def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True, assign: bool = False):
"""
Loads a state dictionary into the model and optionally its EMA counterpart.
Different from torch strict=False mode, the method will not raise error for unmatched state shape while raise warning.
Parameters:
state_dict (Mapping[str, Any]): A dictionary containing separate state dictionaries for the model and
potentially for an EMA version of the model under the keys 'model' and 'ema', respectively.
strict (bool, optional): If True, the method will enforce that the keys in the state dict match exactly
those in the model and EMA model (if applicable). Defaults to True.
assign (bool, optional): If True and in strict mode, will assign the state dictionary directly rather than
matching keys one-by-one. This is typically used when loading parts of state dicts
or using customized loading procedures. Defaults to False.
"""
if strict:
# the converted tpsp checkpoint has "ema" and it is None
if self.config.ema.enabled and state_dict["ema"] is not None:
ema_results: _IncompatibleKeys = self.model_ema.load_state_dict(
state_dict["ema"], strict=strict, assign=assign
)
reg_results: _IncompatibleKeys = self.model.load_state_dict(
state_dict["model"], strict=strict, assign=assign
)
if self.config.ema.enabled and state_dict["ema"] is not None:
return _IncompatibleKeys(
ema_results.missing_keys + reg_results.missing_keys,
ema_results.unexpected_keys + reg_results.unexpected_keys,
)
return reg_results
else:
from cosmos_predict1.diffusion.training.utils.checkpointer import non_strict_load_model
log.critical("load model in non-strict mode")
if "model" in state_dict:
log.critical(non_strict_load_model(self.model, state_dict["model"]), rank0_only=False)
else:
log.critical(non_strict_load_model(self.model, state_dict), rank0_only=False)
if self.config.ema.enabled and "ema" in state_dict and state_dict["ema"] is not None:
log.critical("load ema model in non-strict mode")
log.critical(non_strict_load_model(self.model_ema, state_dict["ema"]), rank0_only=False)
def get_ckpt_postfix(self) -> Tuple[str, int, int]:
"""Get the checkpoint file postfix.
Args:
iteration (int): The current iteration number.
Returns:
postfix (str): The postfix of the checkpoint file.
rank_to_save ema (int), we will not save each ema model in each rank, \
ema model with same rate will be saved once
total_ema_num (int)
"""
total_ema_num = min(self.config.ema.num, distributed.get_world_size())
rank = distributed.get_rank()
if rank == 0:
return "", 0, total_ema_num
if self.config.ema.enabled:
if rank < self.config.ema.num:
return f"_RANK{rank}", rank, total_ema_num
return "", 0, total_ema_num # use rank 0 to save the checkpoint
@contextmanager
def ema_scope(self, context=None, is_cpu=False):
if self.config.ema.enabled:
self.model_ema.cache(self.model.parameters(), is_cpu=is_cpu)
self.model_ema.copy_to(self.model)
if context is not None:
log.info(f"{context}: Switched to EMA weights")
try:
yield None
finally:
if self.config.ema.enabled:
self.model_ema.restore(self.model.parameters())
if context is not None:
log.info(f"{context}: Restored training weights")
T = TypeVar("T", bound=DiffusionModel)
def diffusion_fsdp_class_decorator(base_class: Type[T]) -> Type[T]:
"""
Decorator for the FSDP class for the diffusion model, which handles the FSDP specific logic for the diffusion model.
"""
class FSDPClass(base_class):
"""
Handle FSDP specific logic for the diffusion model. Including:
- FSDP model initialization
- FSDP model / optimizer save and loading
- Different from the original DiffusionModel, the impl of multi-rank EMA is a bit hacky. \
We need to make sure sharded model weights for EMA and regular model are the same.
"""
def __init__(self, config, fsdp_checkpointer: Any):
self.fsdp_checkpointer = fsdp_checkpointer
super().__init__(config)
def set_up_model(self):
config = self.config
# 1. build FSDP sharding strategy and device_mesh
strategy = {
"full": ShardingStrategy.FULL_SHARD,
"hybrid": ShardingStrategy.HYBRID_SHARD,
}[config.fsdp.sharding_strategy]
log.critical(f"Using {strategy} sharding strategy for FSDP")
if config.fsdp.sharding_strategy == "hybrid":
sharding_group_size = getattr(config.fsdp, "sharding_group_size", 8)
device_mesh = hsdp_device_mesh(
sharding_group_size=sharding_group_size,
)
shard_group = device_mesh.get_group(mesh_dim="shard")
replicate_group = device_mesh.get_group(mesh_dim="replicate")
fsdp_process_group = (shard_group, replicate_group)
else:
device_mesh = hsdp_device_mesh(
sharding_group_size=distributed.get_world_size(),
)
shard_group = device_mesh.get_group(mesh_dim="shard")
fsdp_process_group = shard_group
# We piggyback the `device_mesh` to megatron-core's `parallel_state` for global access.
# This is not megatron-core's original API.
parallel_state.fsdp_device_mesh = device_mesh
def get_wrap_policy(_model):
if not hasattr(_model.net, "fsdp_wrap_block_cls"):
raise ValueError(
"Networks does not have fsdp_wrap_block_cls attribute, please check the net definition"
)
fsdp_blocks_cls = _model.net.fsdp_wrap_block_cls
fsdp_blocks_cls = (
list(fsdp_blocks_cls) if isinstance(fsdp_blocks_cls, (list, tuple, set)) else [fsdp_blocks_cls]
)
log.critical(f"Using FSDP blocks {fsdp_blocks_cls}")
log.critical(f"Using wrap policy {config.fsdp.policy}")
if config.fsdp.policy == "size":
min_num_params = getattr(config.fsdp, "min_num_params", 100)
log.critical(f"Using {min_num_params} as the minimum number of parameters for auto-wrap policy")
wrap_policy = functools.partial(size_based_auto_wrap_policy, min_num_params=min_num_params)
else:
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
wrap_policy = functools.partial(
transformer_auto_wrap_policy,
transformer_layer_cls=set(fsdp_blocks_cls),
)
return wrap_policy
# 2. build naive pytorch model and load weights if exists
replica_idx, shard_idx = device_mesh.get_coordinate()
# 2.1 handle ema case first, since float32 is more expensive
if config.ema.enabled:
with misc.timer("Creating PyTorch model and loading weights for ema"):
model_ema = self.build_model().float()
model_ema.cuda().eval().requires_grad_(False)
if distributed.get_rank() == 0:
# only load model in rank0 to reduce network traffic
self.fsdp_checkpointer.load_model_during_init(model_ema, is_ema=True)
# sync ema model weights from rank0
with misc.timer("Sync model states for EMA model"):
#! this is IMPORTANT, see the following comment about regular model for details
#! we broadcast the ema model first, since it is fp32 and costs more memory
distributed.sync_model_states(model_ema, device_mesh.get_group(mesh_dim="shard"))
torch.cuda.empty_cache()
distributed.sync_model_states(model_ema, device_mesh.get_group(mesh_dim="replicate"))
torch.cuda.empty_cache()
# for ema model with dfiferent rate, we download the model when necessary
if shard_idx == 0 and replica_idx > 0 and replica_idx < config.ema.num:
print("loading ema model in rank", replica_idx)
self.fsdp_checkpointer.load_model_during_init(
model_ema,
is_ema=True,
ema_id=replica_idx,
)
print("finish loading ema model in rank", replica_idx)
# 2.1.2 create FSDP model for ema model
with misc.timer("Creating FSDP model for EMA model"):
self.model_ema = FSDP(
model_ema,
sync_module_states=True, # it can reduce network traffic by only loading model in rank0 and sync
process_group=device_mesh.get_group(mesh_dim=1),
sharding_strategy=ShardingStrategy.FULL_SHARD,
auto_wrap_policy=get_wrap_policy(model_ema),
device_id=torch.cuda.current_device(),
limit_all_gathers=True,
)
# extra ema model upate logic to the model
self.model_ema_worker = FastEmaModelUpdater()
s = 0.1
replica_idx, shard_idx = device_mesh.get_coordinate()
divider = 2**replica_idx if replica_idx < config.ema.num else 1
if replica_idx < config.ema.num:
if shard_idx == 0:
print(f"EMA: rank {replica_idx}, rate {config.ema.rate / divider}")
s = config.ema.rate / divider
self.ema_exp_coefficient = np.roots([1, 7, 16 - s**-2, 12 - s**-2]).real.max()
torch.cuda.empty_cache()
# 2.2 handle regular model
with misc.timer("Creating PyTorch model and loading weights for regular model"):
model = self.build_model().cuda().to(**self.tensor_kwargs)
if distributed.get_rank() == 0:
# only load model in rank0 to reduce network traffic and sync later
self.fsdp_checkpointer.load_model_during_init(model, is_ema=False)
#! overwrite the forward method so that it will invoke the FSDP-specific pre- and post-forward sharding logic
model.forward = super().training_step
#! this is IMPORTANT, though following two lines are identical to sync_module_states=True in FSDP
#! we do it twice so that following line can warm up and avoid OOM in aws 128+ nodes settings
#! qsh hypothesize that it is due to overhead of initialization of nccl network communication;
#! without it, peak mem : reg_model + ema_model + FSDP overhead + nccl communication initialization overhead
#! with it, peak men: reg_model + ema_model + FSDP overhead
#! it is tricky, but it works!
with misc.timer("Sync model states for regular model"):
distributed.sync_model_states(model, device_mesh.get_group(mesh_dim="shard"))
torch.cuda.empty_cache()
distributed.sync_model_states(model, device_mesh.get_group(mesh_dim="replicate"))
torch.cuda.empty_cache()
with misc.timer("Creating FSDP model"):
self.model = FSDP(
model.to(**self.tensor_kwargs),
sync_module_states=True, # it can reduce network traffic by only loading model in rank0 and sync
sharding_strategy=strategy,
auto_wrap_policy=get_wrap_policy(model),
process_group=fsdp_process_group,
limit_all_gathers=True,
)
if self.config.fsdp.checkpoint:
fsdp_blocks_cls = model.net.fsdp_wrap_block_cls
fsdp_blocks_cls = (
list(fsdp_blocks_cls)
if isinstance(fsdp_blocks_cls, (list, tuple, set))
else [fsdp_blocks_cls]
)
log.critical(f"Applying FSDP checkpointing with FSDP blocks: {fsdp_blocks_cls}")
apply_fsdp_checkpointing(self.model, list_block_cls=fsdp_blocks_cls)
torch.cuda.empty_cache()
def on_before_zero_grad(
self, optimizer: torch.optim.Optimizer, scheduler: torch.optim.lr_scheduler.LRScheduler, iteration: int
) -> None:
del scheduler, optimizer
if self.config.ema.enabled:
# calculate beta for EMA update
if iteration == 0:
beta = 0.0
else:
i = iteration + 1
beta = (1 - 1 / i) ** (self.ema_exp_coefficient + 1)
self.model_ema_worker.update_average(self.model, self.model_ema, beta=beta)
def training_step(
self, data_batch: Dict[str, torch.Tensor], iteration: int
) -> Tuple[Dict[str, torch.Tensor] | torch.Tensor]:
# ! Important!!!
# ! make sure the training step is the same as the forward method~(training_step in the super class)
# ! this is necessary to trigger the FSDP-specific pre- and post-forward sharding logic
return self.model(data_batch, iteration)
def state_dict(self) -> Dict:
raise NotImplementedError(
"FSDPDiffModle does not support state_dict, use state_dict_model and FSDPCheckpointer"
)
@misc.timer("FSDP state_dict_model")
def state_dict_model(self) -> Dict:
with FSDP.summon_full_params(self.model):
pass
with FSDP.state_dict_type(
self.model, StateDictType.FULL_STATE_DICT, FullStateDictConfig(offload_to_cpu=True, rank0_only=True)
):
model_state = self.model.state_dict()
if self.config.ema.enabled:
with FSDP.summon_full_params(self.model_ema):
pass
with FSDP.state_dict_type(
self.model_ema,
StateDictType.FULL_STATE_DICT,
FullStateDictConfig(offload_to_cpu=True, rank0_only=True),
):
ema_model_state = self.model_ema.state_dict()
else:
ema_model_state = None
return {
"model": model_state,
"ema": ema_model_state,
}
def load_state_dict(self, state_dict: Dict, strict: bool = True, assign: bool = False) -> None:
raise NotImplementedError("FSDPDiffModle does not support load_state_dict, using FSDPCheckpointer")
def init_optimizer_scheduler(
self, optimizer_config: LazyDict, scheduler_config: LazyDict
) -> tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LRScheduler]:
optimizer, scheduler = super().init_optimizer_scheduler(optimizer_config, scheduler_config)
self.fsdp_checkpointer.load_optim_scheduler_during_init(
self.model,
optimizer,
scheduler,
)
return optimizer, scheduler
@contextmanager
def ema_scope(self, context=None, is_cpu=False):
if self.config.ema.enabled:
self.model_ema_worker.cache(self.model.parameters(), is_cpu=is_cpu)
self.model_ema_worker.copy_to(src_model=self.model_ema, tgt_model=self.model)
if context is not None:
log.info(f"{context}: Switched to EMA weights")
try:
yield None
finally:
if self.config.ema.enabled:
self.model_ema_worker.restore(self.model.parameters())
if context is not None:
log.info(f"{context}: Restored training weights")
def get_ckpt_postfix(self) -> Tuple[str, int]:
"""Get the checkpoint file postfix. check FSDPCheckpointer for more details
Args:
iteration (int): The current iteration number.
Returns:
postfix (str): The postfix of the checkpoint file.
replicate_idx, shard_idx (int), current gpu replicate_idx, shard_idx in FSDP \
we will not save each ema model in each GPU, \
ema model with same rate will be saved once
total_ema_num (int)
"""
mesh_shape = parallel_state.fsdp_device_mesh.shape
total_ema_num = min(self.config.ema.num, mesh_shape[0])
replicate_idx, shard_idx = parallel_state.fsdp_device_mesh.get_coordinate()
if replicate_idx == 0:
return "", 0, shard_idx, total_ema_num
if self.config.ema.enabled:
if replicate_idx < self.config.ema.num:
return f"_RANK{replicate_idx}", replicate_idx, shard_idx, total_ema_num
return "", replicate_idx, shard_idx, total_ema_num
return FSDPClass
@diffusion_fsdp_class_decorator
class FSDPDiffusionModel(DiffusionModel):
pass
|