File size: 11,065 Bytes
b6af722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
from typing import Callable, Dict, Optional, Tuple, Union

import torch
from einops import rearrange
from megatron.core import parallel_state
from torch import Tensor

from cosmos_predict1.diffusion.modules.res_sampler import COMMON_SOLVER_OPTIONS
from cosmos_predict1.diffusion.training.conditioner import DataType
from cosmos_predict1.diffusion.training.context_parallel import cat_outputs_cp, split_inputs_cp
from cosmos_predict1.diffusion.training.models.model import DiffusionModel, broadcast_condition
from cosmos_predict1.diffusion.training.models.model_image import CosmosCondition, diffusion_fsdp_class_decorator
from cosmos_predict1.utils import log, misc


class MultiviewDiffusionModel(DiffusionModel):
    def __init__(self, config):
        super().__init__(config)
        self.n_views = config.n_views

    @torch.no_grad()
    def encode(self, state: torch.Tensor) -> torch.Tensor:
        state = rearrange(state, "B C (V T) H W -> (B V) C T H W", V=self.n_views)
        encoded_state = self.vae.encode(state)
        encoded_state = rearrange(encoded_state, "(B V) C T H W -> B C (V T) H W", V=self.n_views) * self.sigma_data
        return encoded_state

    @torch.no_grad()
    def decode(self, latent: torch.Tensor) -> torch.Tensor:
        latent = rearrange(latent, "B C (V T) H W -> (B V) C T H W", V=self.n_views)
        decoded_state = self.vae.decode(latent / self.sigma_data)
        decoded_state = rearrange(decoded_state, "(B V) C T H W -> B C (V T) H W", V=self.n_views)
        return decoded_state

    def compute_loss_with_epsilon_and_sigma(
        self,
        data_batch: dict[str, torch.Tensor],
        x0_from_data_batch: torch.Tensor,
        x0: torch.Tensor,
        condition: CosmosCondition,
        epsilon: torch.Tensor,
        sigma: torch.Tensor,
    ):
        if self.is_image_batch(data_batch):
            # Turn off CP
            self.net.disable_context_parallel()
        else:
            if parallel_state.is_initialized():
                if parallel_state.get_context_parallel_world_size() > 1:
                    # Turn on CP
                    cp_group = parallel_state.get_context_parallel_group()
                    self.net.enable_context_parallel(cp_group)
                    log.debug("[CP] Split x0 and epsilon")

                    x0 = rearrange(x0, "B C (V T) H W -> (B V) C T H W", V=self.n_views)
                    epsilon = rearrange(epsilon, "B C (V T) H W -> (B V) C T H W", V=self.n_views)

                    x0 = split_inputs_cp(x=x0, seq_dim=2, cp_group=self.net.cp_group)
                    epsilon = split_inputs_cp(x=epsilon, seq_dim=2, cp_group=self.net.cp_group)

                    x0 = rearrange(x0, "(B V) C T H W -> B C (V T) H W", V=self.n_views)
                    epsilon = rearrange(epsilon, "(B V) C T H W -> B C (V T) H W", V=self.n_views)

        output_batch, kendall_loss, pred_mse, edm_loss = super(
            DiffusionModel, self
        ).compute_loss_with_epsilon_and_sigma(data_batch, x0_from_data_batch, x0, condition, epsilon, sigma)
        if not self.is_image_batch(data_batch):
            if self.loss_reduce == "sum" and parallel_state.get_context_parallel_world_size() > 1:
                kendall_loss *= parallel_state.get_context_parallel_world_size()

        return output_batch, kendall_loss, pred_mse, edm_loss

    def generate_samples_from_batch(
        self,
        data_batch: Dict,
        guidance: float = 1.5,
        seed: int = 1,
        state_shape: Tuple | None = None,
        n_sample: int | None = None,
        is_negative_prompt: bool = False,
        num_steps: int = 35,
        solver_option: COMMON_SOLVER_OPTIONS = "2ab",
        x_sigma_max: Optional[torch.Tensor] = None,
        sigma_max: float | None = None,
        guidance_other: Union[float, None] = None,
    ) -> Tensor:
        """
        Generate samples from the batch. Based on given batch, it will automatically determine whether to generate image or video samples.
        Args:
            data_batch (dict): raw data batch draw from the training data loader.
            iteration (int): Current iteration number.
            guidance (float): guidance weights
            seed (int): random seed
            state_shape (tuple): shape of the state, default to self.state_shape if not provided
            n_sample (int): number of samples to generate
            is_negative_prompt (bool): use negative prompt t5 in uncondition if true
            num_steps (int): number of steps for the diffusion process
            solver_option (str): differential equation solver option, default to "2ab"~(mulitstep solver)
        """
        self._normalize_video_databatch_inplace(data_batch)
        self._augment_image_dim_inplace(data_batch)
        is_image_batch = self.is_image_batch(data_batch)
        if n_sample is None:
            input_key = self.input_image_key if is_image_batch else self.input_data_key
            n_sample = data_batch[input_key].shape[0]
        if state_shape is None:
            if is_image_batch:
                state_shape = (self.state_shape[0], 1, *self.state_shape[2:])  # C,T,H,W
        x0_fn = self.get_x0_fn_from_batch(
            data_batch, guidance, is_negative_prompt=is_negative_prompt, guidance_other=guidance_other
        )
        x_sigma_max = (
            misc.arch_invariant_rand(
                (n_sample,) + tuple(state_shape),
                torch.float32,
                self.tensor_kwargs["device"],
                seed,
            )
            * self.sde.sigma_max
        )
        if self.net.is_context_parallel_enabled:
            x_sigma_max = rearrange(x_sigma_max, "B C (V T) H W -> (B V) C T H W", V=self.n_views)

            x_sigma_max = split_inputs_cp(x=x_sigma_max, seq_dim=2, cp_group=self.net.cp_group)

            x_sigma_max = rearrange(x_sigma_max, "(B V) C T H W -> B C (V T) H W", V=self.n_views)

        samples = self.sampler(
            x0_fn, x_sigma_max, num_steps=num_steps, sigma_max=self.sde.sigma_max, solver_option=solver_option
        )
        if self.net.is_context_parallel_enabled:
            samples = rearrange(samples, "B C (V T) H W -> (B V) C T H W", V=self.n_views)
            samples = cat_outputs_cp(samples, seq_dim=2, cp_group=self.net.cp_group)
            samples = rearrange(samples, "(B V) C T H W -> B C (V T) H W", V=self.n_views)

        return samples

    def get_x0_fn_from_batch(
        self,
        data_batch: Dict,
        guidance: float = 1.5,
        is_negative_prompt: bool = False,
        guidance_other: Union[float, None] = None,
    ) -> Callable:
        """
        Generates a callable function `x0_fn` based on the provided data batch and guidance factor.

        This function first processes the input data batch through a conditioning workflow (`conditioner`) to obtain conditioned and unconditioned states. It then defines a nested function `x0_fn` which applies a denoising operation on an input `noise_x` at a given noise level `sigma` using both the conditioned and unconditioned states.

        Args:
        - data_batch (Dict): A batch of data used for conditioning. The format and content of this dictionary should align with the expectations of the `self.conditioner`
        - guidance (float, optional): A scalar value that modulates the influence of the conditioned state relative to the unconditioned state in the output. Defaults to 1.5.
        - is_negative_prompt (bool): use negative prompt t5 in uncondition if true

        Returns:
        - Callable: A function `x0_fn(noise_x, sigma)` that takes two arguments, `noise_x` and `sigma`, and return x0 predictoin

        The returned function is suitable for use in scenarios where a denoised state is required based on both conditioned and unconditioned inputs, with an adjustable level of guidance influence.
        """
        if is_negative_prompt:
            condition, uncondition = self.conditioner.get_condition_with_negative_prompt(data_batch)
        else:
            condition, uncondition = self.conditioner.get_condition_uncondition(data_batch)

        to_cp = self.net.is_context_parallel_enabled
        # For inference, check if parallel_state is initialized
        if parallel_state.is_initialized():
            condition = broadcast_condition(condition, to_tp=True, to_cp=to_cp)
            uncondition = broadcast_condition(uncondition, to_tp=True, to_cp=to_cp)
        else:
            assert not to_cp, "parallel_state is not initialized, context parallel should be turned off."

        if guidance_other is not None:
            # assume this is for inference time trajectory guidance for now
            assert not parallel_state.is_initialized(), "Parallel state not supported with two guidances."
            condition_other = copy.deepcopy(uncondition)
            condition_other.trajectory = condition.trajectory

            def x0_fn(noise_x: torch.Tensor, sigma: torch.Tensor) -> torch.Tensor:
                cond_x0 = self.denoise(noise_x, sigma, condition).x0
                uncond_x0 = self.denoise(noise_x, sigma, uncondition).x0
                cond_other_x0 = self.denoise(noise_x, sigma, condition_other).x0

                raw_x0 = cond_x0 + guidance * (cond_x0 - uncond_x0) + guidance_other * (cond_other_x0 - uncond_x0)

                if "guided_image" in data_batch:
                    assert False, "not supported"
                return raw_x0

        else:

            def x0_fn(noise_x: torch.Tensor, sigma: torch.Tensor) -> torch.Tensor:
                cond_x0 = self.denoise(noise_x, sigma, condition).x0
                uncond_x0 = self.denoise(noise_x, sigma, uncondition).x0
                raw_x0 = cond_x0 + guidance * (cond_x0 - uncond_x0)
                if "guided_image" in data_batch:
                    # replacement trick that enables inpainting with base model
                    assert "guided_mask" in data_batch, "guided_mask should be in data_batch if guided_image is present"
                    guide_image = data_batch["guided_image"]
                    guide_mask = data_batch["guided_mask"]
                    raw_x0 = guide_mask * guide_image + (1 - guide_mask) * raw_x0
                return raw_x0

        return x0_fn


@diffusion_fsdp_class_decorator
class FSDPDiffusionModel(MultiviewDiffusionModel):
    pass