Spaces:
Build error
Build error
File size: 37,890 Bytes
b6af722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Literal, Optional
import numpy as np
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
from torch import nn
from torch.distributed import ProcessGroup, get_process_group_ranks
from cosmos_predict1.diffusion.module.attention import normalize
from cosmos_predict1.diffusion.module.timm import trunc_normal_
from cosmos_predict1.diffusion.training.context_parallel import split_inputs_cp
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)
out: (M, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float64)
omega /= embed_dim / 2.0
omega = 1.0 / 10000**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
return emb
def get_3d_sincos_pos_embed(
embed_dim,
grid_size_h,
grid_size_w,
grid_size_t,
spatial_interpolation_scale,
temporal_interpolation_scale,
concat=True,
):
grid_h = np.arange(grid_size_h, dtype=np.float32) / spatial_interpolation_scale
grid_w = np.arange(grid_size_w, dtype=np.float32) / spatial_interpolation_scale
grid_t = np.arange(grid_size_t, dtype=np.float32) / temporal_interpolation_scale
grid = np.meshgrid(grid_w, grid_h, grid_t, indexing="ij")
grid = np.stack(grid, axis=0)
grid = grid.reshape(3, 1, grid_size_h, grid_size_w, grid_size_t)
if concat:
per_axis = embed_dim // 3
per_axis = (per_axis // 2) * 2 # make it even (for sin/cos split)
dim_h, dim_w = per_axis, per_axis
dim_t = embed_dim - dim_h - dim_w
emb_h = get_1d_sincos_pos_embed_from_grid(dim_h, grid[0]) # (H*W, D/3)
emb_w = get_1d_sincos_pos_embed_from_grid(dim_w, grid[1]) # (H*W, D/3)
emb_t = get_1d_sincos_pos_embed_from_grid(dim_t, grid[2]) # (H*W, D/3)
return np.concatenate([emb_h, emb_w, emb_t], axis=1) # (H*W*T, D)
else:
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim, grid[0]) # (H*W)
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim, grid[1]) # (H*W)
emb_t = get_1d_sincos_pos_embed_from_grid(embed_dim, grid[2]) # (H*W)
return emb_h + emb_w + emb_t # (H*W*T, D)
class VideoPositionEmb(nn.Module):
def __init__(self):
super().__init__()
self.cp_group = None
def enable_context_parallel(self, cp_group: ProcessGroup):
self.cp_group = cp_group
def disable_context_parallel(self):
self.cp_group = None
def forward(self, x_B_T_H_W_C: torch.Tensor, fps=Optional[torch.Tensor]) -> torch.Tensor:
"""
With CP, the function assume that the input tensor is already split. It delegates the embedding generation to generate_embeddings function.
"""
B_T_H_W_C = x_B_T_H_W_C.shape
if self.cp_group is not None:
cp_ranks = get_process_group_ranks(self.cp_group)
cp_size = len(cp_ranks)
B, T, H, W, C = B_T_H_W_C
B_T_H_W_C = (B, T * cp_size, H, W, C)
embeddings = self.generate_embeddings(B_T_H_W_C, fps=fps)
if self.cp_group is not None:
if isinstance(self, VideoRopePosition3DEmb):
seq_dim = 0
else:
seq_dim = 1
embeddings = split_inputs_cp(x=embeddings, seq_dim=seq_dim, cp_group=self.cp_group)
return embeddings
def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor]):
raise NotImplementedError
class SinCosPosEmb(VideoPositionEmb):
def __init__(
self,
*, # enforce keyword arguments
model_channels: int,
len_h: int,
len_w: int,
len_t: int,
is_learnable: bool = False,
interpolation: Literal["crop", "resize", "crop_resize"] = "crop",
spatial_interpolation_scale=1.0,
temporal_interpolation_scale=1.0,
init_length_for_resize: int = 16,
**kwargs,
):
"""
Args:
interpolation (str): "crop", "resize", "crop_resize". "crop" means we crop the positional embedding to the length of the input sequence. "resize" means we resize the positional embedding to the length of the input sequence. "crop_resize" (inference only) means we first crop the positional embedding to init_length_for_resize, then resize it to the length of the input sequence.
init_length_for_resize (int): used when interpolation is "crop_resize", where we "resize" embedding during inference for model trained with "crop". We first "crop" the pos_embed to this length (used during training), then run the "resize", default 16
"""
del kwargs # unused
super().__init__()
self.interpolation = interpolation
self.init_length_for_resize = init_length_for_resize
param = get_3d_sincos_pos_embed(
model_channels, len_h, len_w, len_t, spatial_interpolation_scale, temporal_interpolation_scale
)
param = rearrange(param, "(h w t) c -> 1 t h w c", h=len_h, w=len_w)
if is_learnable:
self.pos_embed = nn.Parameter(
torch.from_numpy(param).float(),
)
else:
self.register_buffer("pos_embed", torch.from_numpy(param).float(), persistent=False)
def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor]) -> torch.Tensor:
B, T, H, W, C = B_T_H_W_C
if self.interpolation == "crop":
return self.pos_embed[:, :T, :H, :W]
if self.interpolation == "resize":
return rearrange(
F.interpolate(
rearrange(self.pos_embed, "1 t h w c -> 1 c h w t"),
size=(H, W, T),
mode="linear",
align_corners=False,
),
"1 c h w t -> 1 t h w c",
)
if self.interpolation == "crop_resize":
pos_embed_crop = self.pos_embed[:, : self.init_length_for_resize, :H, :W] # B,T,H,W,C
_, t, h, w, c = pos_embed_crop.shape
pos_embed_crop_resize_t = rearrange(
F.interpolate(
rearrange(pos_embed_crop, "1 t h w c -> 1 (c h w) t"),
size=(T),
mode="linear",
),
"1 (c h w) t -> 1 t h w c",
c=c,
h=h,
w=w,
)
pos_embed_crop_resize = rearrange(
F.interpolate(
rearrange(pos_embed_crop_resize_t, "1 t h w c -> 1 (c t) h w"),
size=(H, W),
mode="bilinear",
),
"1 (c t) h w -> 1 t h w c",
c=c,
)
return pos_embed_crop_resize
raise ValueError(f"Unknown interpolation method {self.interpolation}")
class SinCosPosEmb_FPS_Aware(VideoPositionEmb):
def __init__(
self,
*, # enforce keyword arguments
model_channels: int,
len_h: int,
len_w: int,
len_t: int,
min_fps: int, # 1 for getty video
max_fps: int, # 120 for getty video
is_learnable: bool = False,
interpolation: str = "crop",
spatial_interpolation_scale=1.0,
temporal_interpolation_scale=1.0,
**kwargs, # used for compatibility with other positional embeddings; unused in this class
):
del kwargs # unused
super().__init__()
self.interpolation = interpolation
self.max_fps = max_fps
self.min_fps = min_fps
if self.interpolation == "crop":
param = get_3d_sincos_pos_embed(
model_channels,
len_h,
len_w,
len_t * int(max_fps / min_fps),
spatial_interpolation_scale,
temporal_interpolation_scale,
) # should be max_seq_length * (max_fps / min_fps)
elif self.interpolation == "resize":
param = get_3d_sincos_pos_embed(
model_channels, len_h, len_w, len_t, spatial_interpolation_scale, temporal_interpolation_scale
) # time embedding based min fps
else:
ValueError(f"Unknown interpolation method {self.interpolation}")
param = rearrange(param, "(h w t) c -> 1 t h w c", h=len_h, w=len_w)
if is_learnable:
self.pos_embed = nn.Parameter(
torch.from_numpy(param).float(),
)
else:
self.register_buffer("pos_embed", torch.from_numpy(param).float(), persistent=False)
def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor]) -> torch.Tensor:
B, T, H, W, C = B_T_H_W_C
if self.interpolation == "crop":
if T > 1:
return torch.cat(
[
self.pos_embed[:, : (int(self.max_fps / curr_fps) * T) : int(self.max_fps / curr_fps), :H, :W]
for curr_fps in fps
],
0,
)
else:
return self.pos_embed[:, :T, :H, :W] # image model
elif self.interpolation == "resize":
if T > 1:
return torch.cat(
[
rearrange(
F.interpolate(
rearrange(self.pos_embed, "1 t h w c -> 1 c h w t"),
size=(H, W, T * int(curr_fps / self.min_fps)),
mode="trilinear",
align_corners=True, # important: align corner need to be true
)[:, :, :H, :W, :T],
"1 c h w t -> 1 t h w c",
)
for curr_fps in fps
],
0,
)
else:
# grab self.pos_embed at time step 0 and resize spatially
return rearrange(
F.interpolate(
rearrange(self.pos_embed[:, 0, ::], "1 h w c -> 1 c h w"),
size=(H, W),
mode="bilinear",
align_corners=True,
),
"1 c h w -> 1 h w c",
)
raise ValueError(f"Unknown interpolation method {self.interpolation}")
class LearnableEmb3D(VideoPositionEmb):
def __init__(
self,
*, # enforce keyword arguments
model_channels: int,
len_h: int,
len_w: int,
len_t: int,
interpolation: str = "crop",
is_learnable: bool = True,
**kwargs, # used for compatibility with other positional embeddings; unused in this class
):
del kwargs # unused
super().__init__()
assert is_learnable is True
self.interpolation = interpolation
self.pos_embed = nn.Parameter(torch.zeros(1, len_t, len_h, len_w, model_channels))
trunc_normal_(self.pos_embed, std=0.02)
def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor]) -> torch.Tensor:
B, T, H, W, C = B_T_H_W_C
if self.interpolation == "crop":
return self.pos_embed[:, :T, :H, :W]
if self.interpolation == "resize":
return rearrange(
F.interpolate(
rearrange(self.pos_embed, "1 t h w c -> 1 c h w t"),
size=(H, W, T),
mode="linear",
align_corners=False,
),
"1 c h w t -> 1 t h w c",
)
raise ValueError(f"Unknown interpolation method {self.interpolation}")
class LearnableEmb3D_FPS_Aware(VideoPositionEmb):
def __init__(
self,
*, # enforce keyword arguments
model_channels: int,
len_h: int,
len_w: int,
len_t: int,
min_fps: int, # 1 for getty video
max_fps: int, # 120 for getty video
interpolation: str = "crop",
is_learnable: bool = True,
**kwargs, # used for compatibility with other positional embeddings; unused in this class
):
del kwargs
super().__init__()
assert is_learnable is True
self.interpolation = interpolation
self.max_fps = max_fps
self.min_fps = min_fps
if self.interpolation == "crop":
self.pos_embed = nn.Parameter(
torch.zeros(1, len_t * int(max_fps / min_fps), len_h, len_w, model_channels)
) # should be max_seq_length * (max_fps / min_fps)
elif self.interpolation == "resize":
self.pos_embed = nn.Parameter(
torch.zeros(1, len_t, len_h, len_w, model_channels)
) # time embedding based min fps
else:
ValueError(f"Unknown interpolation method {self.interpolation}")
trunc_normal_(self.pos_embed, std=0.02)
def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor]) -> torch.Tensor:
B, T, H, W, C = B_T_H_W_C
if self.interpolation == "crop":
if T > 1:
return torch.cat(
[
self.pos_embed[:, : (int(self.max_fps / curr_fps) * T) : int(self.max_fps / curr_fps), :H, :W]
for curr_fps in fps
],
0,
)
else:
return self.pos_embed[:, :T, :H, :W] # image model
elif self.interpolation == "resize":
if T > 1:
return torch.cat(
[
rearrange(
F.interpolate(
rearrange(self.pos_embed, "1 t h w c -> 1 c h w t"),
size=(H, W, T * int(curr_fps / self.min_fps)),
mode="trilinear",
align_corners=True, # important: align corner need to be true
)[:, :, :H, :W, :T],
"1 c h w t -> 1 t h w c",
)
for curr_fps in fps
],
0,
)
else:
# grab self.pos_embed at time step 0 and resize spatially
return rearrange(
F.interpolate(
rearrange(self.pos_embed[:, 0, ::], "1 h w c -> 1 c h w"),
size=(H, W),
mode="bilinear",
align_corners=True,
),
"1 c h w -> 1 h w c",
)
raise ValueError(f"Unknown interpolation method {self.interpolation}")
class VideoRopePositionEmb(VideoPositionEmb):
def __init__(
self,
*, # enforce keyword arguments
head_dim: int,
len_h: int,
len_w: int,
len_t: int,
**kwargs, # used for compatibility with other positional embeddings; unused in this class
):
del kwargs
super().__init__()
self.register_buffer("seq", torch.arange(len_h * len_w * len_t, dtype=torch.float))
self.register_buffer(
"dim_range", torch.arange(0, head_dim, 2)[: (head_dim // 2)].float().cuda() / head_dim, persistent=False
)
def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor], ntk_factor: float = 1.0):
theta = 10000.0 * ntk_factor
# original_dtype = self.dim_range.dtype
freq = 1.0 / (theta ** self.dim_range.float())
_, T, H, W, _ = B_T_H_W_C
length = T * H * W
emb_L_D = torch.outer(self.seq[:length], freq)
return rearrange(torch.cat([emb_L_D, emb_L_D], dim=-1), "l d -> l 1 1 d").float()
class VideoRopePosition3DEmb(VideoPositionEmb):
def __init__(
self,
*, # enforce keyword arguments
head_dim: int,
len_h: int,
len_w: int,
len_t: int,
base_fps: int = 24,
h_extrapolation_ratio: float = 1.0,
w_extrapolation_ratio: float = 1.0,
t_extrapolation_ratio: float = 1.0,
**kwargs, # used for compatibility with other positional embeddings; unused in this class
):
del kwargs
super().__init__()
self.register_buffer("seq", torch.arange(max(len_h, len_w, len_t), dtype=torch.float))
self.base_fps = base_fps
self.max_h = len_h
self.max_w = len_w
self.max_t = len_t
dim = head_dim
dim_h = dim // 6 * 2
dim_w = dim_h
dim_t = dim - 2 * dim_h
assert dim == dim_h + dim_w + dim_t, f"bad dim: {dim} != {dim_h} + {dim_w} + {dim_t}"
self.register_buffer(
"dim_spatial_range",
torch.arange(0, dim_h, 2)[: (dim_h // 2)].float() / dim_h,
persistent=False,
)
self.register_buffer(
"dim_temporal_range",
torch.arange(0, dim_t, 2)[: (dim_t // 2)].float() / dim_t,
persistent=False,
)
self.h_ntk_factor = h_extrapolation_ratio ** (dim_h / (dim_h - 2))
self.w_ntk_factor = w_extrapolation_ratio ** (dim_w / (dim_w - 2))
self.t_ntk_factor = t_extrapolation_ratio ** (dim_t / (dim_t - 2))
self._dim_h = dim_h
self._dim_t = dim_t
def reset_parameters(self) -> None:
if self.dim_spatial_range.device == torch.device("meta"):
return
dim_h = self._dim_h
dim_t = self._dim_t
self.seq = torch.arange(max(self.max_h, self.max_w, self.max_t)).float().to(self.dim_spatial_range.device)
self.dim_spatial_range = (
torch.arange(0, dim_h, 2)[: (dim_h // 2)].float().to(self.dim_spatial_range.device) / dim_h
)
self.dim_temporal_range = (
torch.arange(0, dim_t, 2)[: (dim_t // 2)].float().to(self.dim_spatial_range.device) / dim_t
)
def generate_embeddings(
self,
B_T_H_W_C: torch.Size,
fps: Optional[torch.Tensor] = None,
h_ntk_factor: Optional[float] = None,
w_ntk_factor: Optional[float] = None,
t_ntk_factor: Optional[float] = None,
):
"""
Generate embeddings for the given input size.
Args:
B_T_H_W_C (torch.Size): Input tensor size (Batch, Time, Height, Width, Channels).
fps (Optional[torch.Tensor], optional): Frames per second. Defaults to None.
h_ntk_factor (Optional[float], optional): Height NTK factor. If None, uses self.h_ntk_factor. Defaults to None.
w_ntk_factor (Optional[float], optional): Width NTK factor. If None, uses self.w_ntk_factor. Defaults to None.
t_ntk_factor (Optional[float], optional): Time NTK factor. If None, uses self.t_ntk_factor. Defaults to None.
Returns:
Not specified in the original code snippet.
"""
h_ntk_factor = h_ntk_factor if h_ntk_factor is not None else self.h_ntk_factor
w_ntk_factor = w_ntk_factor if w_ntk_factor is not None else self.w_ntk_factor
t_ntk_factor = t_ntk_factor if t_ntk_factor is not None else self.t_ntk_factor
h_theta = 10000.0 * h_ntk_factor
w_theta = 10000.0 * w_ntk_factor
t_theta = 10000.0 * t_ntk_factor
h_spatial_freqs = 1.0 / (h_theta**self.dim_spatial_range)
w_spatial_freqs = 1.0 / (w_theta**self.dim_spatial_range)
temporal_freqs = 1.0 / (t_theta**self.dim_temporal_range)
B, T, H, W, _ = B_T_H_W_C
uniform_fps = (fps is None) or (fps.min() == fps.max())
assert (
uniform_fps or B == 1 or T == 1
), "For video batch, batch size should be 1 for non-uniform fps. For image batch, T should be 1"
assert (
H <= self.max_h and W <= self.max_w
), f"Input dimensions (H={H}, W={W}) exceed the maximum dimensions (max_h={self.max_h}, max_w={self.max_w}) configured for positional embedding. Please adjust the input size or increase the maximum dimensions in the model configuration."
half_emb_h = torch.outer(self.seq[:H], h_spatial_freqs)
half_emb_w = torch.outer(self.seq[:W], w_spatial_freqs)
# apply sequence scaling in temporal dimension
if fps is None: # image case
assert T == 1, "T should be 1 for image batch."
half_emb_t = torch.outer(self.seq[:T], temporal_freqs)
else:
half_emb_t = torch.outer(self.seq[:T] / fps[:1] * self.base_fps, temporal_freqs)
em_T_H_W_D = torch.cat(
[
repeat(half_emb_t, "t d -> t h w d", h=H, w=W),
repeat(half_emb_h, "h d -> t h w d", t=T, w=W),
repeat(half_emb_w, "w d -> t h w d", t=T, h=H),
]
* 2,
dim=-1,
)
return rearrange(em_T_H_W_D, "t h w d -> (t h w) 1 1 d").float()
class SinCosPosEmbAxis(VideoPositionEmb):
def __init__(
self,
*, # enforce keyword arguments
interpolation: str,
model_channels: int,
len_h: int,
len_w: int,
len_t: int,
h_extrapolation_ratio: float = 1.0,
w_extrapolation_ratio: float = 1.0,
t_extrapolation_ratio: float = 1.0,
**kwargs,
):
"""
Args:
interpolation (str): we curretly only support "crop", ideally when we need extrapolation capacity, we should adjust frequency or other more advanced methods. they are not implemented yet.
"""
del kwargs # unused
super().__init__()
self.interpolation = interpolation
assert self.interpolation in ["crop"], f"Unknown interpolation method {self.interpolation}"
dim = model_channels
dim_h = dim // 6 * 2
dim_w = dim_h
dim_t = dim - 2 * dim_h
assert dim == dim_h + dim_w + dim_t, f"bad dim: {dim} != {dim_h} + {dim_w} + {dim_t}"
# rescale pos id is equivalent to rescale frequency
emb_h = get_1d_sincos_pos_embed_from_grid(dim_h, pos=np.arange(len_h) * 1.0 / h_extrapolation_ratio)
emb_w = get_1d_sincos_pos_embed_from_grid(dim_w, pos=np.arange(len_w) * 1.0 / w_extrapolation_ratio)
emb_t = get_1d_sincos_pos_embed_from_grid(dim_t, pos=np.arange(len_t) * 1.0 / t_extrapolation_ratio)
self.register_buffer("pos_emb_h", torch.from_numpy(emb_h).float(), persistent=False)
self.register_buffer("pos_emb_w", torch.from_numpy(emb_w).float(), persistent=False)
self.register_buffer("pos_emb_t", torch.from_numpy(emb_t).float(), persistent=False)
def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor]) -> torch.Tensor:
B, T, H, W, C = B_T_H_W_C
if self.interpolation == "crop":
emb_h_H = self.pos_emb_h[:H]
emb_w_W = self.pos_emb_w[:W]
emb_t_T = self.pos_emb_t[:T]
emb = torch.cat(
[
repeat(emb_t_T, "t d-> b t h w d", b=B, h=H, w=W),
repeat(emb_h_H, "h d-> b t h w d", b=B, t=T, w=W),
repeat(emb_w_W, "w d-> b t h w d", b=B, t=T, h=H),
],
dim=-1,
)
assert list(emb.shape)[:4] == [B, T, H, W], f"bad shape: {list(emb.shape)[:4]} != {B, T, H, W}"
return emb
raise ValueError(f"Unknown interpolation method {self.interpolation}")
class LearnablePosEmbAxis(VideoPositionEmb):
def __init__(
self,
*, # enforce keyword arguments
interpolation: str,
model_channels: int,
len_h: int,
len_w: int,
len_t: int,
**kwargs,
):
"""
Args:
interpolation (str): we curretly only support "crop", ideally when we need extrapolation capacity, we should adjust frequency or other more advanced methods. they are not implemented yet.
"""
del kwargs # unused
super().__init__()
self.interpolation = interpolation
assert self.interpolation in ["crop"], f"Unknown interpolation method {self.interpolation}"
self.pos_emb_h = nn.Parameter(torch.zeros(len_h, model_channels))
self.pos_emb_w = nn.Parameter(torch.zeros(len_w, model_channels))
self.pos_emb_t = nn.Parameter(torch.zeros(len_t, model_channels))
trunc_normal_(self.pos_emb_h, std=0.02)
trunc_normal_(self.pos_emb_w, std=0.02)
trunc_normal_(self.pos_emb_t, std=0.02)
def reset_parameters(self):
if self.pos_emb_h.device == torch.device("meta"):
return
trunc_normal_(self.pos_emb_h, std=0.02)
trunc_normal_(self.pos_emb_w, std=0.02)
trunc_normal_(self.pos_emb_t, std=0.02)
def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor]) -> torch.Tensor:
B, T, H, W, _ = B_T_H_W_C
if self.interpolation == "crop":
emb_h_H = self.pos_emb_h[:H]
emb_w_W = self.pos_emb_w[:W]
emb_t_T = self.pos_emb_t[:T]
emb = (
repeat(emb_t_T, "t d-> b t h w d", b=B, h=H, w=W)
+ repeat(emb_h_H, "h d-> b t h w d", b=B, t=T, w=W)
+ repeat(emb_w_W, "w d-> b t h w d", b=B, t=T, h=H)
)
assert list(emb.shape)[:4] == [B, T, H, W], f"bad shape: {list(emb.shape)[:4]} != {B, T, H, W}"
else:
raise ValueError(f"Unknown interpolation method {self.interpolation}")
return normalize(emb, dim=-1, eps=1e-6)
class MultiviewVideoPositionEmb(nn.Module):
def __init__(
self,
):
super().__init__()
self.cp_group = None
def enable_context_parallel(self, cp_group: ProcessGroup):
self.cp_group = cp_group
def disable_context_parallel(self):
self.cp_group = None
def forward(self, x_B_T_H_W_C: torch.Tensor, fps=Optional[torch.Tensor]) -> torch.Tensor:
"""
With CP, the function assume that the input tensor is already split. It delegates the embedding generation to generate_embeddings function.
"""
B_T_H_W_C = x_B_T_H_W_C.shape
if self.cp_group is not None:
cp_ranks = get_process_group_ranks(self.cp_group)
cp_size = len(cp_ranks)
B, T, H, W, C = B_T_H_W_C
B_T_H_W_C = (B, T * cp_size, H, W, C)
embeddings = self.generate_embeddings(B_T_H_W_C, fps=fps)
if self.cp_group is not None:
if isinstance(self, MultiviewVideoRopePosition3DEmb):
seq_dim = 1
embeddings = rearrange(embeddings, "(V T) H W D -> V (T H W) 1 1 D", V=self.n_views).float()
# rearrange(em_T_H_W_D, "t h w d -> (t h w) 1 1 d").float()
embeddings = split_inputs_cp(x=embeddings, seq_dim=seq_dim, cp_group=self.cp_group)
embeddings = rearrange(embeddings, "V T 1 1 D -> (V T) 1 1 D", V=self.n_views).float()
else:
seq_dim = 1
embeddings = rearrange(embeddings, "B (V T) H W C -> (B V) T H W C", V=self.n_views)
embeddings = split_inputs_cp(x=embeddings, seq_dim=seq_dim, cp_group=self.cp_group)
embeddings = rearrange(embeddings, "(B V) T H W C -> B (V T) H W C", V=self.n_views)
else:
if isinstance(self, MultiviewVideoRopePosition3DEmb):
embeddings = rearrange(embeddings, "t h w d -> (t h w) 1 1 d").float()
return embeddings
def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor]):
raise NotImplementedError
class MultiviewVideoRopePosition3DEmb(MultiviewVideoPositionEmb):
def __init__(
self,
*, # enforce keyword arguments
head_dim: int,
len_h: int,
len_w: int,
len_t: int,
base_fps: int = 24,
h_extrapolation_ratio: float = 1.0,
w_extrapolation_ratio: float = 1.0,
t_extrapolation_ratio: float = 1.0,
n_views: int = 4,
**kwargs, # used for compatibility with other positional embeddings; unused in this class
):
del kwargs
super().__init__()
self.register_buffer("seq", torch.arange(max(len_h, len_w, len_t), dtype=torch.float))
self.base_fps = base_fps
self.max_h = len_h
self.max_w = len_w
self.n_views = n_views
dim = head_dim
dim_h = dim // 6 * 2
dim_w = dim_h
dim_t = dim - 2 * dim_h
assert dim == dim_h + dim_w + dim_t, f"bad dim: {dim} != {dim_h} + {dim_w} + {dim_t}"
self.register_buffer(
"dim_spatial_range",
torch.arange(0, dim_h, 2)[: (dim_h // 2)].float().cuda() / dim_h,
persistent=False,
)
self.register_buffer(
"dim_temporal_range",
torch.arange(0, dim_t, 2)[: (dim_t // 2)].float().cuda() / dim_t,
persistent=False,
)
self.h_ntk_factor = h_extrapolation_ratio ** (dim_h / (dim_h - 2))
self.w_ntk_factor = w_extrapolation_ratio ** (dim_w / (dim_w - 2))
self.t_ntk_factor = t_extrapolation_ratio ** (dim_t / (dim_t - 2))
def generate_embedding_for_batch(
self,
B_T_H_W_C: torch.Size,
fps: Optional[torch.Tensor] = None,
h_ntk_factor: Optional[float] = None,
w_ntk_factor: Optional[float] = None,
t_ntk_factor: Optional[float] = None,
):
"""
Generate embeddings for the given input size.
Args:
B_T_H_W_C (torch.Size): Input tensor size (Batch, Time, Height, Width, Channels).
fps (Optional[torch.Tensor], optional): Frames per second. Defaults to None.
h_ntk_factor (Optional[float], optional): Height NTK factor. If None, uses self.h_ntk_factor. Defaults to None.
w_ntk_factor (Optional[float], optional): Width NTK factor. If None, uses self.w_ntk_factor. Defaults to None.
t_ntk_factor (Optional[float], optional): Time NTK factor. If None, uses self.t_ntk_factor. Defaults to None.
Returns:
Not specified in the original code snippet.
"""
h_ntk_factor = h_ntk_factor if h_ntk_factor is not None else self.h_ntk_factor
w_ntk_factor = w_ntk_factor if w_ntk_factor is not None else self.w_ntk_factor
t_ntk_factor = t_ntk_factor if t_ntk_factor is not None else self.t_ntk_factor
h_theta = 10000.0 * h_ntk_factor
w_theta = 10000.0 * w_ntk_factor
t_theta = 10000.0 * t_ntk_factor
h_spatial_freqs = 1.0 / (h_theta**self.dim_spatial_range)
w_spatial_freqs = 1.0 / (w_theta**self.dim_spatial_range)
temporal_freqs = 1.0 / (t_theta**self.dim_temporal_range)
B, T, H, W, _ = B_T_H_W_C
uniform_fps = (fps is None) or (fps.min() == fps.max())
assert uniform_fps # only support uniform fps now
assert (
uniform_fps or B == 1 or T == 1
), "For video batch, batch size should be 1 for non-uniform fps. For image batch, T should be 1"
assert (
H <= self.max_h and W <= self.max_w
), f"Input dimensions (H={H}, W={W}) exceed the maximum dimensions (max_h={self.max_h}, max_w={self.max_w}) configured for positional embedding. Please adjust the input size or increase the maximum dimensions in the model configuration."
half_emb_h = torch.outer(self.seq[:H], h_spatial_freqs)
half_emb_w = torch.outer(self.seq[:W], w_spatial_freqs)
# apply sequence scaling in temporal dimension
if fps is None: # image case
assert T == 1, "T should be 1 for image batch."
half_emb_t = torch.outer(self.seq[:T], temporal_freqs)
else:
half_emb_t = torch.outer(self.seq[:T] / fps[:1] * self.base_fps, temporal_freqs)
em_T_H_W_D = torch.cat(
[
repeat(half_emb_t, "t d -> t h w d", h=H, w=W),
repeat(half_emb_h, "h d -> t h w d", t=T, w=W),
repeat(half_emb_w, "w d -> t h w d", t=T, h=H),
]
* 2,
dim=-1,
)
return em_T_H_W_D
def generate_embeddings(
self,
B_T_H_W_C: torch.Size,
fps: Optional[torch.Tensor] = None,
h_ntk_factor: Optional[float] = None,
w_ntk_factor: Optional[float] = None,
t_ntk_factor: Optional[float] = None,
):
"""
Generate embeddings for the given input size. The camera view dimension is merged in the T dimension
Args:
B_T_H_W_C (torch.Size): Input tensor size (Batch, Time * Views, Height, Width, Channels).
fps (Optional[torch.Tensor], optional): Frames per second. Defaults to None.
h_ntk_factor (Optional[float], optional): Height NTK factor. If None, uses self.h_ntk_factor. Defaults to None.
w_ntk_factor (Optional[float], optional): Width NTK factor. If None, uses self.w_ntk_factor. Defaults to None.
t_ntk_factor (Optional[float], optional): Time NTK factor. If None, uses self.t_ntk_factor. Defaults to None.
Returns:
Not specified in the original code snippet.
"""
B, T, H, W, C = B_T_H_W_C
single_view_B_T_H_W_C = (B, T // self.n_views, H, W, C)
em_T_H_W_D = torch.cat(
[
self.generate_embedding_for_batch(
single_view_B_T_H_W_C,
fps=fps,
h_ntk_factor=h_ntk_factor,
w_ntk_factor=w_ntk_factor,
t_ntk_factor=t_ntk_factor,
)
for item in range(self.n_views)
],
dim=0,
)
return em_T_H_W_D
# return rearrange(em_T_H_W_D, "t h w d -> (t h w) 1 1 d").float()
class MultiviewSinCosPosEmbAxis(MultiviewVideoPositionEmb):
def __init__(
self,
*, # enforce keyword arguments
interpolation: str,
model_channels: int,
len_h: int,
len_w: int,
len_t: int,
h_extrapolation_ratio: float = 1.0,
w_extrapolation_ratio: float = 1.0,
t_extrapolation_ratio: float = 1.0,
n_views: int = 4,
**kwargs,
):
"""
Args:
interpolation (str): we curretly only support "crop", ideally when we need extrapolation capacity, we should adjust frequency or other more advanced methods. they are not implemented yet.
"""
del kwargs # unused
self.n_views = n_views
super().__init__()
self.interpolation = interpolation
assert self.interpolation in ["crop"], f"Unknown interpolation method {self.interpolation}"
dim = model_channels
dim_h = dim // 6 * 2
dim_w = dim_h
dim_t = dim - 2 * dim_h
assert dim == dim_h + dim_w + dim_t, f"bad dim: {dim} != {dim_h} + {dim_w} + {dim_t}"
# rescale pos id is equivalent to rescale frequency
emb_h = get_1d_sincos_pos_embed_from_grid(dim_h, pos=np.arange(len_h) * 1.0 / h_extrapolation_ratio)
emb_w = get_1d_sincos_pos_embed_from_grid(dim_w, pos=np.arange(len_w) * 1.0 / w_extrapolation_ratio)
emb_t = get_1d_sincos_pos_embed_from_grid(dim_t, pos=np.arange(len_t) * 1.0 / t_extrapolation_ratio)
self.register_buffer("pos_emb_h", torch.from_numpy(emb_h).float(), persistent=False)
self.register_buffer("pos_emb_w", torch.from_numpy(emb_w).float(), persistent=False)
self.register_buffer("pos_emb_t", torch.from_numpy(emb_t).float(), persistent=False)
def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor]) -> torch.Tensor:
B, T, H, W, C = B_T_H_W_C
single_view_T = T // self.n_views
if self.interpolation == "crop":
emb_h_H = self.pos_emb_h[:H]
emb_w_W = self.pos_emb_w[:W]
emb_t_T = self.pos_emb_t[:single_view_T]
emb = torch.cat(
[
torch.cat(
[
repeat(emb_t_T, "t d-> b t h w d", b=B, h=H, w=W),
repeat(emb_h_H, "h d-> b t h w d", b=B, t=single_view_T, w=W),
repeat(emb_w_W, "w d-> b t h w d", b=B, t=single_view_T, h=H),
],
dim=-1,
)
for _ in range(self.n_views)
],
1,
)
assert list(emb.shape)[:4] == [B, T, H, W], f"bad shape: {list(emb.shape)[:4]} != {B, T, H, W}"
return emb
raise ValueError(f"Unknown interpolation method {self.interpolation}")
|