Spaces:
Build error
Build error
File size: 32,275 Bytes
b6af722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from abc import ABC, abstractmethod
import torch
import torch.nn.functional as F
from einops import rearrange
from torch.nn.modules import Module
from cosmos_predict1.diffusion.training.module.pretrained_vae_base import JITVAE, BaseVAE, StateDictVAE
from cosmos_predict1.utils import log
class VideoTokenizerInterface(ABC):
@abstractmethod
def encode(self, state: torch.Tensor) -> torch.Tensor:
pass
@abstractmethod
def decode(self, latent: torch.Tensor) -> torch.Tensor:
pass
@abstractmethod
def get_latent_num_frames(self, num_pixel_frames: int) -> int:
pass
@abstractmethod
def get_pixel_num_frames(self, num_latent_frames: int) -> int:
pass
@property
@abstractmethod
def spatial_compression_factor(self):
pass
@property
@abstractmethod
def temporal_compression_factor(self):
pass
@property
@abstractmethod
def spatial_resolution(self):
pass
@property
@abstractmethod
def pixel_chunk_duration(self):
pass
@property
@abstractmethod
def latent_chunk_duration(self):
pass
@property
def is_chunk_overlap(self):
return False
class BasePretrainedVideoTokenizer(ABC):
"""
Base class for a pretrained video tokenizer that handles chunking of video data for efficient processing.
Args:
pixel_chunk_duration (int): The duration (in number of frames) of each chunk of video data at the pixel level.
temporal_compress_factor (int): The factor by which the video data is temporally compressed during processing.
max_enc_batch_size (int): The maximum batch size to process in one go during encoding to avoid memory overflow.
max_dec_batch_size (int): The maximum batch size to process in one go during decoding to avoid memory overflow.
The class introduces parameters for managing temporal chunks (`pixel_chunk_duration` and `temporal_compress_factor`)
which define how video data is subdivided and compressed during the encoding and decoding processes. The
`max_enc_batch_size` and `max_dec_batch_size` parameters allow processing in smaller batches to handle memory
constraints.
"""
def __init__(
self,
pixel_chunk_duration: int = 17,
temporal_compress_factor: int = 8,
max_enc_batch_size: int = 8,
max_dec_batch_size: int = 4,
):
self._pixel_chunk_duration = pixel_chunk_duration
self._temporal_compress_factor = temporal_compress_factor
self.max_enc_batch_size = max_enc_batch_size
self.max_dec_batch_size = max_dec_batch_size
def register_mean_std(self, mean_std_fp: str) -> None:
latent_mean, latent_std = torch.load(mean_std_fp, map_location="cuda", weights_only=True)
latent_mean = latent_mean.view(self.latent_ch, -1)[:, : self.latent_chunk_duration]
latent_std = latent_std.view(self.latent_ch, -1)[:, : self.latent_chunk_duration]
target_shape = [1, self.latent_ch, self.latent_chunk_duration, 1, 1]
self.register_buffer(
"latent_mean",
latent_mean.to(self.dtype).reshape(*target_shape),
persistent=False,
)
self.register_buffer(
"latent_std",
latent_std.to(self.dtype).reshape(*target_shape),
persistent=False,
)
def transform_encode_state_shape(self, state: torch.Tensor) -> torch.Tensor:
"""
Rearranges the input state tensor to the required shape for encoding video data. Mainly for chunk based encoding
"""
B, C, T, H, W = state.shape
assert (
T % self.pixel_chunk_duration == 0
), f"Temporal dimension {T} is not divisible by chunk_length {self.pixel_chunk_duration}"
return rearrange(state, "b c (n t) h w -> (b n) c t h w", t=self.pixel_chunk_duration)
def transform_decode_state_shape(self, latent: torch.Tensor) -> None:
B, _, T, _, _ = latent.shape
assert (
T % self.latent_chunk_duration == 0
), f"Temporal dimension {T} is not divisible by chunk_length {self.latent_chunk_duration}"
return rearrange(latent, "b c (n t) h w -> (b n) c t h w", t=self.latent_chunk_duration)
@torch.no_grad()
def encode(self, state: torch.Tensor) -> torch.Tensor:
if self._temporal_compress_factor == 1:
_, _, origin_T, _, _ = state.shape
state = rearrange(state, "b c t h w -> (b t) c 1 h w")
B, C, T, H, W = state.shape
state = self.transform_encode_state_shape(state)
# use max_enc_batch_size to avoid OOM
if state.shape[0] > self.max_enc_batch_size:
latent = []
for i in range(0, state.shape[0], self.max_enc_batch_size):
latent.append(super().encode(state[i : i + self.max_enc_batch_size]))
latent = torch.cat(latent, dim=0)
else:
latent = super().encode(state)
latent = rearrange(latent, "(b n) c t h w -> b c (n t) h w", b=B)
if self._temporal_compress_factor == 1:
latent = rearrange(latent, "(b t) c 1 h w -> b c t h w", t=origin_T)
return latent
@torch.no_grad()
def decode(self, latent: torch.Tensor) -> torch.Tensor:
"""
Decodes a batch of latent representations into video frames by applying temporal chunking. Similar to encode,
it handles video data by processing smaller temporal chunks to reconstruct the original video dimensions.
It can also decode single frame image data.
Args:
latent (torch.Tensor): The latent space tensor containing encoded video data.
Returns:
torch.Tensor: The decoded video tensor reconstructed from latent space.
"""
if self._temporal_compress_factor == 1:
_, _, origin_T, _, _ = latent.shape
latent = rearrange(latent, "b c t h w -> (b t) c 1 h w")
B, _, T, _, _ = latent.shape
latent = self.transform_decode_state_shape(latent)
# use max_enc_batch_size to avoid OOM
if latent.shape[0] > self.max_dec_batch_size:
state = []
for i in range(0, latent.shape[0], self.max_dec_batch_size):
state.append(super().decode(latent[i : i + self.max_dec_batch_size]))
state = torch.cat(state, dim=0)
else:
state = super().decode(latent)
assert state.shape[2] == self.pixel_chunk_duration
state = rearrange(state, "(b n) c t h w -> b c (n t) h w", b=B)
if self._temporal_compress_factor == 1:
return rearrange(state, "(b t) c 1 h w -> b c t h w", t=origin_T)
return state
@property
def pixel_chunk_duration(self) -> int:
return self._pixel_chunk_duration
@property
def latent_chunk_duration(self) -> int:
# return self._latent_chunk_duration
assert (self.pixel_chunk_duration - 1) % self.temporal_compression_factor == 0, (
f"Pixel chunk duration {self.pixel_chunk_duration} is not divisible by latent chunk duration "
f"{self.latent_chunk_duration}"
)
return (self.pixel_chunk_duration - 1) // self.temporal_compression_factor + 1
@property
def temporal_compression_factor(self):
return self._temporal_compress_factor
def get_latent_num_frames(self, num_pixel_frames: int) -> int:
if num_pixel_frames == 1:
return 1
assert (
num_pixel_frames % self.pixel_chunk_duration == 0
), f"Temporal dimension {num_pixel_frames} is not divisible by chunk_length {self.pixel_chunk_duration}"
return num_pixel_frames // self.pixel_chunk_duration * self.latent_chunk_duration
def get_pixel_num_frames(self, num_latent_frames: int) -> int:
if num_latent_frames == 1:
return 1
assert (
num_latent_frames % self.latent_chunk_duration == 0
), f"Temporal dimension {num_latent_frames} is not divisible by chunk_length {self.latent_chunk_duration}"
return num_latent_frames // self.latent_chunk_duration * self.pixel_chunk_duration
class VideoJITTokenizer(BasePretrainedVideoTokenizer, JITVAE, VideoTokenizerInterface):
"""
Instance of BasePretrainedVideoVAE that loads encoder and decoder from JIT scripted module file
"""
def __init__(
self,
enc_fp: str,
dec_fp: str,
name: str,
mean_std_fp: str,
latent_ch: int = 16,
is_bf16: bool = True,
spatial_compression_factor: int = 16,
temporal_compression_factor: int = 8,
pixel_chunk_duration: int = 17,
max_enc_batch_size: int = 8,
max_dec_batch_size: int = 4,
spatial_resolution: str = "720",
):
super().__init__(pixel_chunk_duration, temporal_compression_factor, max_enc_batch_size, max_dec_batch_size)
super(BasePretrainedVideoTokenizer, self).__init__(enc_fp, dec_fp, name, mean_std_fp, latent_ch, False, is_bf16)
self._spatial_compression_factor = spatial_compression_factor
self._spatial_resolution = spatial_resolution
@property
def spatial_compression_factor(self):
return self._spatial_compression_factor
@property
def spatial_resolution(self) -> str:
return self._spatial_resolution
class VideoStateDictTokenizer(BasePretrainedVideoTokenizer, StateDictVAE, VideoTokenizerInterface):
"""
Instance of BasePretrainedVideoVAE that loads encoder and decoder from state_dict checkpoint
"""
def __init__(
self,
enc_fp: str,
dec_fp: str,
vae: torch.nn.Module,
name: str,
mean_std_fp: str,
latent_ch: int = 16,
is_bf16: bool = True,
spatial_compression_factor: int = 16,
temporal_compression_factor: int = 8,
pixel_chunk_duration: int = 17,
max_enc_batch_size: int = 8,
max_dec_batch_size: int = 4,
spatial_resolution: str = "720",
):
super().__init__(pixel_chunk_duration, temporal_compression_factor, max_enc_batch_size, max_dec_batch_size)
super(BasePretrainedVideoTokenizer, self).__init__(
enc_fp, dec_fp, vae, name, mean_std_fp, latent_ch, is_image=False, is_bf16=is_bf16
)
self._spatial_compression_factor = spatial_compression_factor
self._spatial_resolution = spatial_resolution
@property
def spatial_compression_factor(self):
return self._spatial_compression_factor
@property
def spatial_resolution(self) -> str:
return self._spatial_resolution
class VideoJITVAEChunkWiseTokenizer(VideoJITTokenizer):
"""
Do temporal chunk wise encoding and decoding.
"""
def __init__(
self,
enc_fp: str,
dec_fp: str,
name: str,
mean_std_fp: str,
spatial_compression_factor: int,
latent_ch: int = 16,
is_bf16: bool = True,
full_duration: int = 121,
chunk_duration: int = 49,
temporal_compression_factor: int = 8,
max_enc_batch_size: int = 8,
max_dec_batch_size: int = 4,
spatial_resolution="720",
overlap_size: int = 9,
):
self._latent_chunk_duration = (
chunk_duration - 1
) // temporal_compression_factor + 1 # need to set before super init
self._latent_full_duration = (full_duration - 1) // temporal_compression_factor + 1
super().__init__(
enc_fp=enc_fp,
dec_fp=dec_fp,
name=name,
mean_std_fp=mean_std_fp,
latent_ch=latent_ch,
is_bf16=is_bf16,
pixel_chunk_duration=chunk_duration,
temporal_compression_factor=temporal_compression_factor,
max_enc_batch_size=max_enc_batch_size,
max_dec_batch_size=max_dec_batch_size,
spatial_resolution=spatial_resolution,
spatial_compression_factor=spatial_compression_factor,
)
self.overlap_size = overlap_size
self.full_duration = full_duration
# make sure full_duration is divisible by chunk_duration with pre-set overlap size
assert (full_duration - overlap_size) % (chunk_duration - overlap_size) == 0
@property
def latent_chunk_duration(self) -> int:
return self._latent_chunk_duration
@property
def latent_full_duration(self) -> int:
return self._latent_full_duration
def get_latent_num_frames(self, num_pixel_frames: int) -> int:
if num_pixel_frames == 1:
return 1
assert (
num_pixel_frames % self.full_duration == 0
), f"Temporal dimension {num_pixel_frames} is not divisible by chunk_length {self.full_duration}"
return num_pixel_frames // self.full_duration * self.latent_full_duration
def get_pixel_num_frames(self, num_latent_frames: int) -> int:
if num_latent_frames == 1:
return 1
assert (
num_latent_frames % self.latent_full_duration == 0
), f"Temporal dimension {num_latent_frames} is not divisible by chunk_length {self.latent_full_duration}"
return num_latent_frames // self.latent_full_duration * self.full_duration
def transform_encode_state_shape(self, state: torch.Tensor) -> torch.Tensor:
# This is a hack impl, should be improved later
return state
def transform_decode_state_shape(self, latent: torch.Tensor) -> torch.Tensor:
# This is a hack impl, should be improved later
return latent
def _impl_encode(self, state: torch.Tensor) -> torch.Tensor:
in_dtype = state.dtype
latent_mean = self.latent_mean.to(in_dtype)
latent_std = self.latent_std.to(in_dtype)
encoded_state = self.encoder(state.to(self.dtype))
if isinstance(encoded_state, torch.Tensor):
pass
elif isinstance(encoded_state, tuple):
assert isinstance(encoded_state[0], torch.Tensor)
encoded_state = encoded_state[0]
else:
raise ValueError("Invalid type of encoded state")
return (encoded_state.to(in_dtype) - latent_mean) / latent_std
@torch.no_grad()
def encode(self, state: torch.Tensor) -> torch.Tensor:
B, C, T, H, W = state.shape
assert state.shape[2] == self.full_duration
# Calculate the number of overlapping windows/chunks
# Each window has a duration of self.pixel_chunk_duration frames
# The overlap between consecutive windows is self.overlap_size frames
num_windows = (T - self.pixel_chunk_duration) // (self.pixel_chunk_duration - self.overlap_size)
# Calculate the total number of frames covered by the windows
num_windowed_frames = self.pixel_chunk_duration + num_windows * (self.pixel_chunk_duration - self.overlap_size)
assert num_windowed_frames == T # only handle case where number frames can be separated equally
# Prepare a list to hold overlapping chunks of the input state
pack_list = [state[:, :, : self.pixel_chunk_duration]] + [
state[
:,
:,
(ii + 1)
* (self.pixel_chunk_duration - self.overlap_size) : (ii + 1)
* (self.pixel_chunk_duration - self.overlap_size)
+ self.pixel_chunk_duration,
]
for ii in range(num_windows)
]
latent = self._impl_encode(torch.cat(pack_list, dim=0))
latent = rearrange(latent, "(n b) c t h w -> n b c t h w", b=B)
# Calculate the overlap size in the latent space, accounting for any temporal compression
# For example, if the network downsamples temporally by a factor of 4, adjust the overlap accordingly
overlap_latent = (self.overlap_size - 1) // self.temporal_compression_factor + 1
# Concatenate the latent representations from each chunk/window
# For the first chunk, include all latent frames
# For subsequent chunks, exclude the overlapping latent frames at the beginning
out = torch.cat([latent[0]] + [latent[i, :, :, overlap_latent:] for i in range(1, len(latent))], dim=2)
return out
@torch.no_grad()
def maybe_pad_latent(self, latent: torch.Tensor) -> tuple[torch.Tensor, int]:
"""Since the decoder expect the latent to be window_size + (window_size - decode_overlap_size) * N, we need to pad the latent to match the expected size
Args:
latent (torch.Tensor): [B, C, T, H, W]
Returns:
latent: torch.Tensor, the padded latent
padding_t: int, the number of padding latent t
"""
# Calculate the overlap size and window size in the latent space, considering any temporal compression
decode_overlap_size = (self.overlap_size - 1) // self.temporal_compression_factor + 1
# Calculate the number of windows/chunks for decoding
window_size = (self.pixel_chunk_duration - 1) // self.temporal_compression_factor + 1
B, C, current_latent_t, H, W = latent.shape
if current_latent_t < window_size:
# If the current latent tensor is smaller than the window size, pad it to the window size
target_latent_t = window_size
else:
# Calculate the target latent frame number for decoding
target_latent_t = window_size + math.ceil(
(current_latent_t - window_size) / (window_size - decode_overlap_size)
) * (window_size - decode_overlap_size)
padding_t = target_latent_t - current_latent_t
if padding_t != 0:
log.info(
f"Padding latent from {current_latent_t} to {target_latent_t} for decoding purpose. current window_size: {window_size}, decode_overlap_size: {decode_overlap_size}"
)
padding = latent.new_zeros(B, C, padding_t, H, W)
latent = torch.cat([latent, padding], dim=2).contiguous()
return latent, padding_t
@torch.no_grad()
def decode(self, state: torch.Tensor) -> torch.Tensor:
state, padding_t = self.maybe_pad_latent(state)
B, C, num_latents, H, W = state.shape
# Calculate the overlap size and window size in the latent space, considering any temporal compression
decode_overlap_size = (self.overlap_size - 1) // self.temporal_compression_factor + 1
# Calculate the number of windows/chunks for decoding
window_size = (self.pixel_chunk_duration - 1) // self.temporal_compression_factor + 1
num_windows = (num_latents - window_size) // (window_size - decode_overlap_size) + 1
decoded_frames = []
# Start decoding with the initial window of latent frames
current_state = state[:, :, :window_size]
for i in range(num_windows):
# Decode the current window to get the reconstructed frames
window_frames = super().decode(current_state)
decoded_frames.append(window_frames)
# Re-encode the overlapping frames at the end of the decoded window to obtain the last latent frame
# This is necessary due to the casual first frame design
last_latent = self._impl_encode(window_frames[:, :, -self.overlap_size : -self.overlap_size + 1])[:, :, 0:1]
# Calculate the start and end indices for the next chunk of latent frames
start_idx = window_size + i * (window_size - decode_overlap_size) - decode_overlap_size + 1
end_idx = start_idx + window_size - 1
# Prepare the next state by concatenating the last latent frame with the next chunk of latent frames
current_state = torch.cat([last_latent, state[:, :, start_idx:end_idx]], dim=2)
# Remove overlapping frames (e.g., 17 frames) from all windows except the first one.
for i in range(1, num_windows):
decoded_frames[i] = decoded_frames[i][:, :, self.overlap_size :]
video_tensor = torch.cat(decoded_frames, dim=2)
return video_tensor
@property
def is_chunk_overlap(self):
return True
class DebugMeanStdVideoJITVAE(VideoJITTokenizer):
"""
A class for one
"""
def register_mean_std(self, mean_std_fp: str) -> None:
target_shape = [1, self.latent_ch, 1, 1, 1]
self.register_buffer(
"latent_mean",
# latent_mean.to(self.dtype).reshape(*target_shape),
torch.zeros(*target_shape, dtype=self.dtype),
persistent=False,
)
self.register_buffer(
"latent_std",
torch.ones(*target_shape, dtype=self.dtype),
persistent=False,
)
@torch.no_grad()
def encode(self, state: torch.Tensor) -> torch.Tensor:
B, C, T, H, W = state.shape
if T == 1:
return JITVAE.encode(self, state)
return super().encode(state)
@torch.no_grad()
def decode(self, latent: torch.Tensor) -> torch.Tensor:
B, _, T, _, _ = latent.shape
if T == 1:
return JITVAE.decode(self, latent)
return super().decode(latent)
class DebugMeanStdVideoJITVAEChunkWiseTokenizer(VideoJITVAEChunkWiseTokenizer):
def register_mean_std(self, mean_std_fp: str) -> None:
target_shape = [1, self.latent_ch, 1, 1, 1]
self.register_buffer(
"latent_mean",
# latent_mean.to(self.dtype).reshape(*target_shape),
torch.zeros(*target_shape, dtype=self.dtype),
persistent=False,
)
self.register_buffer(
"latent_std",
torch.ones(*target_shape, dtype=self.dtype),
persistent=False,
)
@torch.no_grad()
def encode(self, state: torch.Tensor) -> torch.Tensor:
B, C, T, H, W = state.shape
if T == 1:
return JITVAE.encode(self, state)
return super().encode(state)
@torch.no_grad()
def decode(self, latent: torch.Tensor) -> torch.Tensor:
B, _, T, _, _ = latent.shape
if T == 1:
return JITVAE.decode(self, latent)
return super().decode(latent)
class JointImageVideoTokenizer(BaseVAE, VideoTokenizerInterface):
def __init__(
self,
image_vae: torch.nn.Module,
video_vae: torch.nn.Module,
name: str,
latent_ch: int = 16,
squeeze_for_image: bool = True,
):
super().__init__(latent_ch, name)
self.image_vae = image_vae
self.video_vae = video_vae
self.squeeze_for_image = squeeze_for_image
def encode_image(self, state: torch.Tensor) -> torch.Tensor:
if self.squeeze_for_image:
return self.image_vae.encode(state.squeeze(2)).unsqueeze(2)
return self.image_vae.encode(state)
def decode_image(self, latent: torch.Tensor) -> torch.Tensor:
if self.squeeze_for_image:
return self.image_vae.decode(latent.squeeze(2)).unsqueeze(2)
return self.image_vae.decode(latent)
@torch.no_grad()
def encode(self, state: torch.Tensor) -> torch.Tensor:
B, C, T, H, W = state.shape
if T == 1:
return self.encode_image(state)
return self.video_vae.encode(state)
@torch.no_grad()
def decode(self, latent: torch.Tensor) -> torch.Tensor:
B, C, T, H, W = latent.shape
if T == 1:
return self.decode_image(latent)
return self.video_vae.decode(latent)
def reset_dtype(self, *args, **kwargs):
"""
Resets the data type of the encoder and decoder to the model's default data type.
Args:
*args, **kwargs: Unused, present to allow flexibility in method calls.
"""
del args, kwargs
self.image_vae.reset_dtype()
self.video_vae.reset_dtype()
def get_latent_num_frames(self, num_pixel_frames: int) -> int:
if num_pixel_frames == 1:
return 1
return self.video_vae.get_latent_num_frames(num_pixel_frames)
def get_pixel_num_frames(self, num_latent_frames: int) -> int:
if num_latent_frames == 1:
return 1
return self.video_vae.get_pixel_num_frames(num_latent_frames)
@property
def spatial_compression_factor(self):
return self.video_vae.spatial_compression_factor
@property
def temporal_compression_factor(self):
return self.video_vae.temporal_compression_factor
@property
def spatial_resolution(self) -> str:
return self.video_vae.spatial_resolution
@property
def pixel_chunk_duration(self) -> int:
return self.video_vae.pixel_chunk_duration
@property
def latent_chunk_duration(self) -> int:
return self.video_vae.latent_chunk_duration
class JointImageVideoSharedJITTokenizer(JointImageVideoTokenizer):
"""
First version of the ImageVideoVAE trained with Fitsum.
We have to use seperate mean and std for image and video due to non-causal nature of the model.
"""
def __init__(self, image_vae: Module, video_vae: Module, name: str, latent_ch: int = 16):
super().__init__(image_vae, video_vae, name, latent_ch, squeeze_for_image=False)
assert isinstance(image_vae, JITVAE)
assert isinstance(
video_vae, VideoJITTokenizer
), f"video_vae should be an instance of VideoJITVAE, got {type(video_vae)}"
# a hack to make the image_vae and video_vae share the same encoder and decoder
self.image_vae.encoder = self.video_vae.encoder
self.image_vae.decoder = self.video_vae.decoder
class JointImageVideoStateDictTokenizer(JointImageVideoTokenizer):
"""
Copy of ImageVideoVAE1 that uses plain torch.nn.Module instead of JITed one so
that it can be used witch torch.compile()
"""
def __init__(self, image_vae: Module, video_vae: Module, name: str, latent_ch: int = 16):
super().__init__(image_vae, video_vae, name, latent_ch, squeeze_for_image=False)
assert isinstance(image_vae, StateDictVAE)
assert isinstance(video_vae, VideoStateDictTokenizer)
# a hack to make the image_vae and video_vae share the same encoder and decoder
# nn.Module
del self.image_vae.vae
# Just method
del self.image_vae.encoder
# Just method
del self.image_vae.decoder
self.image_vae.vae = self.video_vae.vae
self.image_vae.encoder = self.video_vae.encoder
self.image_vae.decoder = self.video_vae.decoder
class DummyJointImageVideoTokenizer(BaseVAE, VideoTokenizerInterface):
def __init__(
self,
name: str = "dummy_joint_image_video",
pixel_ch: int = 3,
latent_ch: int = 16,
pixel_chunk_duration: int = 17,
latent_chunk_duration: int = 3,
spatial_compression_factor: int = 16,
temporal_compression_factor: int = 8,
spatial_resolution: str = "720",
):
self.pixel_ch = pixel_ch
self._pixel_chunk_duration = pixel_chunk_duration
self._latent_chunk_duration = latent_chunk_duration
self._spatial_compression_factor = spatial_compression_factor
self._temporal_compression_factor = temporal_compression_factor
self._spatial_resolution = spatial_resolution
super().__init__(latent_ch, name)
@property
def spatial_compression_factor(self):
return self._spatial_compression_factor
@property
def temporal_compression_factor(self):
return self._temporal_compression_factor
@property
def spatial_resolution(self) -> str:
return self._spatial_resolution
@property
def pixel_chunk_duration(self) -> int:
return self._pixel_chunk_duration
@property
def latent_chunk_duration(self) -> int:
return self._latent_chunk_duration
def get_latent_num_frames(self, num_pixel_frames: int) -> int:
if num_pixel_frames == 1:
return 1
assert (
num_pixel_frames % self.pixel_chunk_duration == 0
), f"Temporal dimension {num_pixel_frames} is not divisible by chunk_length {self.pixel_chunk_duration}"
return num_pixel_frames // self.pixel_chunk_duration * self.latent_chunk_duration
def get_pixel_num_frames(self, num_latent_frames: int) -> int:
if num_latent_frames == 1:
return 1
assert (
num_latent_frames % self.latent_chunk_duration == 0
), f"Temporal dimension {num_latent_frames} is not divisible by chunk_length {self.latent_chunk_duration}"
return num_latent_frames // self.latent_chunk_duration * self.pixel_chunk_duration
def encode(self, state: torch.Tensor) -> torch.Tensor:
B, C, T, H, W = state.shape
if T == 1:
state_B_T_C_H_W = F.interpolate(
rearrange(state, "b c t h w -> b t c h w"),
size=(self.latent_ch, H // self.spatial_compression_factor, W // self.spatial_compression_factor),
mode="trilinear",
align_corners=False,
)
return rearrange(state_B_T_C_H_W, "b t c h w -> b c t h w").contiguous()
assert (
T % self.pixel_chunk_duration == 0
), f"Temporal dimension {T} is not divisible by chunk_length {self.pixel_chunk_duration}"
num_frames = T // self.pixel_chunk_duration * self.latent_chunk_duration
state_B_C_T_H_W = F.interpolate(
state,
size=(self.latent_ch, H // self.spatial_compression_factor, W // self.spatial_compression_factor),
mode="trilinear",
align_corners=False,
)
state_B_H_W_T_C = rearrange(state_B_C_T_H_W, "b c t h w -> b h w t c")
state_B_H_W_T_C = F.interpolate(
state_B_H_W_T_C,
size=(W // self.spatial_compression_factor, num_frames, self.latent_ch),
mode="trilinear",
align_corners=False,
)
return rearrange(state_B_H_W_T_C, "b h w t c -> b c t h w").contiguous()
def decode(self, latent: torch.Tensor) -> torch.Tensor:
B, C, T, H, W = latent.shape
if T == 1:
latent_B_T_C_H_W = F.interpolate(
rearrange(latent, "b c t h w -> b t c h w"),
size=(self.pixel_ch, H * self.spatial_compression_factor, W * self.spatial_compression_factor),
mode="trilinear",
align_corners=False,
)
return rearrange(latent_B_T_C_H_W, "b t c h w -> b c t h w").contiguous()
assert (
T % self.latent_chunk_duration == 0
), f"Temporal dimension {T} is not divisible by chunk_length {self.latent_chunk_duration}"
num_frames = T * self.pixel_chunk_duration // self.latent_chunk_duration
latent_B_H_W_T_C = rearrange(latent, "b c t h w -> b h w t c")
latent_B_H_W_T_C = F.interpolate(
latent_B_H_W_T_C,
size=(W * self.spatial_compression_factor, num_frames, self.pixel_ch),
mode="trilinear",
align_corners=False,
)
latent_B_C_T_H_W = rearrange(latent_B_H_W_T_C, "b h w t c -> b c t h w")
state = F.interpolate(
latent_B_C_T_H_W,
size=(num_frames, H * self.spatial_compression_factor, W * self.spatial_compression_factor),
mode="trilinear",
align_corners=False,
)
return state.contiguous()
|