Spaces:
Build error
Build error
File size: 15,324 Bytes
b6af722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from abc import ABC, abstractmethod
import torch
import torch.nn.functional as F
from cosmos_predict1.utils.distributed import rank0_first
from cosmos_predict1.utils.misc import load_from_s3_with_cache
class BaseVAE(torch.nn.Module, ABC):
"""
Abstract base class for a Variational Autoencoder (VAE).
All subclasses should implement the methods to define the behavior for encoding
and decoding, along with specifying the latent channel size.
"""
def __init__(self, channel: int = 3, name: str = "vae"):
super().__init__()
self.channel = channel
self.name = name
@property
def latent_ch(self) -> int:
"""
Returns the number of latent channels in the VAE.
"""
return self.channel
@abstractmethod
def encode(self, state: torch.Tensor) -> torch.Tensor:
"""
Encodes the input tensor into a latent representation.
Args:
- state (torch.Tensor): The input tensor to encode.
Returns:
- torch.Tensor: The encoded latent tensor.
"""
pass
@abstractmethod
def decode(self, latent: torch.Tensor) -> torch.Tensor:
"""
Decodes the latent representation back to the original space.
Args:
- latent (torch.Tensor): The latent tensor to decode.
Returns:
- torch.Tensor: The decoded tensor.
"""
pass
@property
def spatial_compression_factor(self) -> int:
"""
Returns the spatial reduction factor for the VAE.
"""
raise NotImplementedError("The spatial_compression_factor property must be implemented in the derived class.")
class BasePretrainedImageVAE(BaseVAE):
"""
A base class for pretrained Variational Autoencoder (VAE) that loads mean and standard deviation values
from a remote store, handles data type conversions, and normalization
using provided mean and standard deviation values for latent space representation.
Derived classes should load pre-trained encoder and decoder components from a remote store
Attributes:
latent_mean (Tensor): The mean used for normalizing the latent representation.
latent_std (Tensor): The standard deviation used for normalizing the latent representation.
dtype (dtype): Data type for model tensors, determined by whether bf16 is enabled.
Args:
mean_std_fp (str): File path to the pickle file containing mean and std of the latent space.
latent_ch (int, optional): Number of latent channels (default is 16).
is_image (bool, optional): Flag to indicate whether the output is an image (default is True).
is_bf16 (bool, optional): Flag to use Brain Floating Point 16-bit data type (default is True).
"""
def __init__(
self,
name: str,
mean_std_fp: str,
latent_ch: int = 16,
is_image: bool = True,
is_bf16: bool = True,
) -> None:
super().__init__(latent_ch, name)
dtype = torch.bfloat16 if is_bf16 else torch.float32
self.dtype = dtype
self.is_image = is_image
self.mean_std_fp = mean_std_fp
self.name = name
self.backend_args = None
self.register_mean_std(mean_std_fp)
def register_mean_std(self, mean_std_fp: str) -> None:
latent_mean, latent_std = torch.load(mean_std_fp, map_location="cuda", weights_only=True)
target_shape = [1, self.latent_ch, 1, 1] if self.is_image else [1, self.latent_ch, 1, 1, 1]
self.register_buffer(
"latent_mean",
latent_mean.to(self.dtype).reshape(*target_shape),
persistent=False,
)
self.register_buffer(
"latent_std",
latent_std.to(self.dtype).reshape(*target_shape),
persistent=False,
)
@torch.no_grad()
def encode(self, state: torch.Tensor) -> torch.Tensor:
"""
Encode the input state to latent space; also handle the dtype conversion, mean and std scaling
"""
in_dtype = state.dtype
latent_mean = self.latent_mean.to(in_dtype)
latent_std = self.latent_std.to(in_dtype)
encoded_state = self.encoder(state.to(self.dtype))
if isinstance(encoded_state, torch.Tensor):
pass
elif isinstance(encoded_state, tuple):
assert isinstance(encoded_state[0], torch.Tensor)
encoded_state = encoded_state[0]
else:
raise ValueError("Invalid type of encoded state")
return (encoded_state.to(in_dtype) - latent_mean) / latent_std
@torch.no_grad()
def decode(self, latent: torch.Tensor) -> torch.Tensor:
"""
Decode the input latent to state; also handle the dtype conversion, mean and std scaling
"""
in_dtype = latent.dtype
latent = latent * self.latent_std.to(in_dtype) + self.latent_mean.to(in_dtype)
return self.decoder(latent.to(self.dtype)).to(in_dtype)
def reset_dtype(self, *args, **kwargs):
"""
Resets the data type of the encoder and decoder to the model's default data type.
Args:
*args, **kwargs: Unused, present to allow flexibility in method calls.
"""
del args, kwargs
self.decoder.to(self.dtype)
self.encoder.to(self.dtype)
class JITVAE(BasePretrainedImageVAE):
"""
A JIT compiled Variational Autoencoder (VAE) that loads pre-trained encoder
and decoder components from a remote store, handles data type conversions, and normalization
using provided mean and standard deviation values for latent space representation.
Attributes:
encoder (Module): The JIT compiled encoder loaded from storage.
decoder (Module): The JIT compiled decoder loaded from storage.
latent_mean (Tensor): The mean used for normalizing the latent representation.
latent_std (Tensor): The standard deviation used for normalizing the latent representation.
dtype (dtype): Data type for model tensors, determined by whether bf16 is enabled.
Args:
enc_fp (str): File path to the encoder's JIT file on the remote store.
dec_fp (str): File path to the decoder's JIT file on the remote store.
name (str): Name of the model, used for differentiating cache file paths.
mean_std_fp (str): File path to the pickle file containing mean and std of the latent space.
latent_ch (int, optional): Number of latent channels (default is 16).
is_image (bool, optional): Flag to indicate whether the output is an image (default is True).
is_bf16 (bool, optional): Flag to use Brain Floating Point 16-bit data type (default is True).
"""
def __init__(
self,
enc_fp: str,
dec_fp: str,
name: str,
mean_std_fp: str,
latent_ch: int = 16,
is_image: bool = True,
is_bf16: bool = True,
):
super().__init__(name, mean_std_fp, latent_ch, is_image, is_bf16)
self.load_encoder(enc_fp)
self.load_decoder(dec_fp)
def load_encoder(self, enc_fp: str) -> None:
"""
Load the encoder from the remote store.
Args:
- enc_fp (str): File path to the encoder's JIT file on the remote store.
"""
self.encoder = torch.jit.load(enc_fp, map_location="cuda")
self.encoder.eval()
for param in self.encoder.parameters():
param.requires_grad = False
self.encoder.to(self.dtype)
def load_decoder(self, dec_fp: str) -> None:
"""
Load the decoder from the remote store.
Args:
- dec_fp (str): File path to the decoder's JIT file on the remote store.
"""
self.decoder = torch.jit.load(dec_fp, map_location="cuda")
self.decoder.eval()
for param in self.decoder.parameters():
param.requires_grad = False
self.decoder.to(self.dtype)
class StateDictVAE(BasePretrainedImageVAE):
"""
A Variational Autoencoder (VAE) that loads pre-trained weights into
provided encoder and decoder components from a remote store, handles data type conversions,
and normalization using provided mean and standard deviation values for latent space representation.
Attributes:
encoder (Module): The encoder with weights loaded from storage.
decoder (Module): The decoder with weights loaded from storage.
latent_mean (Tensor): The mean used for normalizing the latent representation.
latent_std (Tensor): The standard deviation used for normalizing the latent representation.
dtype (dtype): Data type for model tensors, determined by whether bf16 is enabled.
Args:
enc_fp (str): File path to the encoder's JIT file on the remote store.
dec_fp (str): File path to the decoder's JIT file on the remote store.
vae (Module): Instance of VAE with not loaded weights
name (str): Name of the model, used for differentiating cache file paths.
mean_std_fp (str): File path to the pickle file containing mean and std of the latent space.
latent_ch (int, optional): Number of latent channels (default is 16).
is_image (bool, optional): Flag to indicate whether the output is an image (default is True).
is_bf16 (bool, optional): Flag to use Brain Floating Point 16-bit data type (default is True).
"""
def __init__(
self,
enc_fp: str,
dec_fp: str,
vae: torch.nn.Module,
name: str,
mean_std_fp: str,
latent_ch: int = 16,
is_image: bool = True,
is_bf16: bool = True,
):
super().__init__(name, mean_std_fp, latent_ch, is_image, is_bf16)
self.load_encoder_and_decoder(enc_fp, dec_fp, vae)
def load_encoder_and_decoder(self, enc_fp: str, dec_fp: str, vae: torch.nn.Module) -> None:
"""
Load the encoder from the remote store.
Args:
- vae_fp (str): File path to the vae's state dict file on the remote store.
- vae (str): VAE module into which weights will be loaded.
"""
state_dict_enc = load_from_s3_with_cache(
enc_fp,
f"vae/{self.name}_enc.jit",
easy_io_kwargs={"map_location": torch.device(torch.cuda.current_device())},
backend_args=self.backend_args,
)
state_dict_dec = load_from_s3_with_cache(
dec_fp,
f"vae/{self.name}_dec.jit",
easy_io_kwargs={"map_location": torch.device(torch.cuda.current_device())},
backend_args=self.backend_args,
)
jit_weights_state_dict = state_dict_enc.state_dict() | state_dict_dec.state_dict()
jit_weights_state_dict = {
k: v
for k, v in jit_weights_state_dict.items()
# Global variables captured by JIT
if k
not in (
"encoder.patcher.wavelets",
"encoder.patcher._arange",
"decoder.unpatcher.wavelets",
"decoder.unpatcher._arange",
)
}
vae.load_state_dict(jit_weights_state_dict)
vae.eval()
for param in vae.parameters():
param.requires_grad = False
vae.to(self.dtype)
self.vae = vae
self.encoder = self.vae.encode
self.decoder = self.vae.decode
def reset_dtype(self, *args, **kwargs):
"""
Resets the data type of the encoder and decoder to the model's default data type.
Args:
*args, **kwargs: Unused, present to allow flexibility in method calls.
"""
del args, kwargs
self.vae.to(self.dtype)
class SDVAE(BaseVAE):
def __init__(self, batch_size=16, count_std: bool = False, is_downsample: bool = True) -> None:
super().__init__(channel=4, name="sd_vae")
self.dtype = torch.bfloat16
self.register_buffer(
"scale",
torch.tensor([4.17, 4.62, 3.71, 3.28], dtype=self.dtype).reciprocal().reshape(1, -1, 1, 1),
persistent=False,
)
self.register_buffer(
"bias",
-1.0 * torch.tensor([5.81, 3.25, 0.12, -2.15], dtype=self.dtype).reshape(1, -1, 1, 1) * self.scale,
persistent=False,
)
self.batch_size = batch_size
self.count_std = count_std
self.is_downsample = is_downsample
self.load_vae()
self.reset_dtype()
def reset_dtype(self, *args, **kwargs):
del args, kwargs
self.vae.to(self.dtype)
@rank0_first
def load_vae(self) -> None:
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
os.environ["HF_HUB_DISABLE_PROGRESS_BARS"] = "1"
import diffusers
vae_name = "stabilityai/sd-vae-ft-mse"
try:
vae = diffusers.models.AutoencoderKL.from_pretrained(vae_name, local_files_only=True)
except: # noqa: E722
# Could not load the model from cache; try without local_files_only.
vae = diffusers.models.AutoencoderKL.from_pretrained(vae_name)
self.vae = vae.eval().requires_grad_(False)
@torch.no_grad()
def encode(self, state: torch.Tensor) -> torch.Tensor:
"""
state : pixel range [-1, 1]
"""
if self.is_downsample:
_h, _w = state.shape[-2:]
state = F.interpolate(state, size=(_h // 2, _w // 2), mode="bilinear", align_corners=False)
in_dtype = state.dtype
state = state.to(self.dtype)
state = (state + 1.0) / 2.0
latent_dist = self.vae.encode(state)["latent_dist"]
mean, std = latent_dist.mean, latent_dist.std
if self.count_std:
latent = mean + torch.randn_like(mean) * std
else:
latent = mean
latent = latent * self.scale
latent = latent + self.bias
return latent.to(in_dtype)
@torch.no_grad()
def decode(self, latent: torch.Tensor) -> torch.Tensor:
in_dtype = latent.dtype
latent = latent.to(self.dtype)
latent = latent - self.bias
latent = latent / self.scale
latent = torch.cat([self.vae.decode(batch)["sample"] for batch in latent.split(self.batch_size)])
if self.is_downsample:
_h, _w = latent.shape[-2:]
latent = F.interpolate(latent, size=(_h * 2, _w * 2), mode="bilinear", align_corners=False)
return latent.to(in_dtype) * 2 - 1.0
@property
def spatial_compression_factor(self) -> int:
return 8
|