File size: 15,324 Bytes
b6af722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from abc import ABC, abstractmethod

import torch
import torch.nn.functional as F

from cosmos_predict1.utils.distributed import rank0_first
from cosmos_predict1.utils.misc import load_from_s3_with_cache


class BaseVAE(torch.nn.Module, ABC):
    """
    Abstract base class for a Variational Autoencoder (VAE).

    All subclasses should implement the methods to define the behavior for encoding
    and decoding, along with specifying the latent channel size.
    """

    def __init__(self, channel: int = 3, name: str = "vae"):
        super().__init__()
        self.channel = channel
        self.name = name

    @property
    def latent_ch(self) -> int:
        """
        Returns the number of latent channels in the VAE.
        """
        return self.channel

    @abstractmethod
    def encode(self, state: torch.Tensor) -> torch.Tensor:
        """
        Encodes the input tensor into a latent representation.

        Args:
        - state (torch.Tensor): The input tensor to encode.

        Returns:
        - torch.Tensor: The encoded latent tensor.
        """
        pass

    @abstractmethod
    def decode(self, latent: torch.Tensor) -> torch.Tensor:
        """
        Decodes the latent representation back to the original space.

        Args:
        - latent (torch.Tensor): The latent tensor to decode.

        Returns:
        - torch.Tensor: The decoded tensor.
        """
        pass

    @property
    def spatial_compression_factor(self) -> int:
        """
        Returns the spatial reduction factor for the VAE.
        """
        raise NotImplementedError("The spatial_compression_factor property must be implemented in the derived class.")


class BasePretrainedImageVAE(BaseVAE):
    """
    A base class for pretrained Variational Autoencoder (VAE) that loads mean and standard deviation values
    from a remote store, handles data type conversions, and normalization
    using provided mean and standard deviation values for latent space representation.
    Derived classes should load pre-trained encoder and decoder components from a remote store

    Attributes:
        latent_mean (Tensor): The mean used for normalizing the latent representation.
        latent_std (Tensor): The standard deviation used for normalizing the latent representation.
        dtype (dtype): Data type for model tensors, determined by whether bf16 is enabled.

    Args:
        mean_std_fp (str): File path to the pickle file containing mean and std of the latent space.
        latent_ch (int, optional): Number of latent channels (default is 16).
        is_image (bool, optional): Flag to indicate whether the output is an image (default is True).
        is_bf16 (bool, optional): Flag to use Brain Floating Point 16-bit data type (default is True).
    """

    def __init__(
        self,
        name: str,
        mean_std_fp: str,
        latent_ch: int = 16,
        is_image: bool = True,
        is_bf16: bool = True,
    ) -> None:
        super().__init__(latent_ch, name)
        dtype = torch.bfloat16 if is_bf16 else torch.float32
        self.dtype = dtype
        self.is_image = is_image
        self.mean_std_fp = mean_std_fp
        self.name = name

        self.backend_args = None

        self.register_mean_std(mean_std_fp)

    def register_mean_std(self, mean_std_fp: str) -> None:
        latent_mean, latent_std = torch.load(mean_std_fp, map_location="cuda", weights_only=True)
        target_shape = [1, self.latent_ch, 1, 1] if self.is_image else [1, self.latent_ch, 1, 1, 1]
        self.register_buffer(
            "latent_mean",
            latent_mean.to(self.dtype).reshape(*target_shape),
            persistent=False,
        )
        self.register_buffer(
            "latent_std",
            latent_std.to(self.dtype).reshape(*target_shape),
            persistent=False,
        )

    @torch.no_grad()
    def encode(self, state: torch.Tensor) -> torch.Tensor:
        """
        Encode the input state to latent space; also handle the dtype conversion, mean and std scaling
        """
        in_dtype = state.dtype
        latent_mean = self.latent_mean.to(in_dtype)
        latent_std = self.latent_std.to(in_dtype)
        encoded_state = self.encoder(state.to(self.dtype))
        if isinstance(encoded_state, torch.Tensor):
            pass
        elif isinstance(encoded_state, tuple):
            assert isinstance(encoded_state[0], torch.Tensor)
            encoded_state = encoded_state[0]
        else:
            raise ValueError("Invalid type of encoded state")
        return (encoded_state.to(in_dtype) - latent_mean) / latent_std

    @torch.no_grad()
    def decode(self, latent: torch.Tensor) -> torch.Tensor:
        """
        Decode the input latent to state; also handle the dtype conversion, mean and std scaling
        """
        in_dtype = latent.dtype
        latent = latent * self.latent_std.to(in_dtype) + self.latent_mean.to(in_dtype)
        return self.decoder(latent.to(self.dtype)).to(in_dtype)

    def reset_dtype(self, *args, **kwargs):
        """
        Resets the data type of the encoder and decoder to the model's default data type.

        Args:
            *args, **kwargs: Unused, present to allow flexibility in method calls.
        """
        del args, kwargs
        self.decoder.to(self.dtype)
        self.encoder.to(self.dtype)


class JITVAE(BasePretrainedImageVAE):
    """
    A JIT compiled Variational Autoencoder (VAE) that loads pre-trained encoder
    and decoder components from a remote store, handles data type conversions, and normalization
    using provided mean and standard deviation values for latent space representation.

    Attributes:
        encoder (Module): The JIT compiled encoder loaded from storage.
        decoder (Module): The JIT compiled decoder loaded from storage.
        latent_mean (Tensor): The mean used for normalizing the latent representation.
        latent_std (Tensor): The standard deviation used for normalizing the latent representation.
        dtype (dtype): Data type for model tensors, determined by whether bf16 is enabled.

    Args:
        enc_fp (str): File path to the encoder's JIT file on the remote store.
        dec_fp (str): File path to the decoder's JIT file on the remote store.
        name (str): Name of the model, used for differentiating cache file paths.
        mean_std_fp (str): File path to the pickle file containing mean and std of the latent space.
        latent_ch (int, optional): Number of latent channels (default is 16).
        is_image (bool, optional): Flag to indicate whether the output is an image (default is True).
        is_bf16 (bool, optional): Flag to use Brain Floating Point 16-bit data type (default is True).
    """

    def __init__(
        self,
        enc_fp: str,
        dec_fp: str,
        name: str,
        mean_std_fp: str,
        latent_ch: int = 16,
        is_image: bool = True,
        is_bf16: bool = True,
    ):
        super().__init__(name, mean_std_fp, latent_ch, is_image, is_bf16)
        self.load_encoder(enc_fp)
        self.load_decoder(dec_fp)

    def load_encoder(self, enc_fp: str) -> None:
        """
        Load the encoder from the remote store.

        Args:
        - enc_fp (str): File path to the encoder's JIT file on the remote store.
        """
        self.encoder = torch.jit.load(enc_fp, map_location="cuda")
        self.encoder.eval()
        for param in self.encoder.parameters():
            param.requires_grad = False
        self.encoder.to(self.dtype)

    def load_decoder(self, dec_fp: str) -> None:
        """
        Load the decoder from the remote store.

        Args:
        - dec_fp (str): File path to the decoder's JIT file on the remote store.
        """
        self.decoder = torch.jit.load(dec_fp, map_location="cuda")
        self.decoder.eval()
        for param in self.decoder.parameters():
            param.requires_grad = False
        self.decoder.to(self.dtype)


class StateDictVAE(BasePretrainedImageVAE):
    """
    A Variational Autoencoder (VAE) that loads pre-trained weights into
    provided encoder and decoder components from a remote store, handles data type conversions,
    and normalization using provided mean and standard deviation values for latent space representation.

    Attributes:
        encoder (Module): The encoder with weights loaded from storage.
        decoder (Module): The decoder with weights loaded from storage.
        latent_mean (Tensor): The mean used for normalizing the latent representation.
        latent_std (Tensor): The standard deviation used for normalizing the latent representation.
        dtype (dtype): Data type for model tensors, determined by whether bf16 is enabled.

    Args:
        enc_fp (str): File path to the encoder's JIT file on the remote store.
        dec_fp (str): File path to the decoder's JIT file on the remote store.
        vae (Module): Instance of VAE with not loaded weights
        name (str): Name of the model, used for differentiating cache file paths.
        mean_std_fp (str): File path to the pickle file containing mean and std of the latent space.
        latent_ch (int, optional): Number of latent channels (default is 16).
        is_image (bool, optional): Flag to indicate whether the output is an image (default is True).
        is_bf16 (bool, optional): Flag to use Brain Floating Point 16-bit data type (default is True).
    """

    def __init__(
        self,
        enc_fp: str,
        dec_fp: str,
        vae: torch.nn.Module,
        name: str,
        mean_std_fp: str,
        latent_ch: int = 16,
        is_image: bool = True,
        is_bf16: bool = True,
    ):
        super().__init__(name, mean_std_fp, latent_ch, is_image, is_bf16)

        self.load_encoder_and_decoder(enc_fp, dec_fp, vae)

    def load_encoder_and_decoder(self, enc_fp: str, dec_fp: str, vae: torch.nn.Module) -> None:
        """
        Load the encoder from the remote store.

        Args:
        - vae_fp (str): File path to the vae's state dict file on the remote store.
        - vae (str): VAE module into which weights will be loaded.
        """
        state_dict_enc = load_from_s3_with_cache(
            enc_fp,
            f"vae/{self.name}_enc.jit",
            easy_io_kwargs={"map_location": torch.device(torch.cuda.current_device())},
            backend_args=self.backend_args,
        )

        state_dict_dec = load_from_s3_with_cache(
            dec_fp,
            f"vae/{self.name}_dec.jit",
            easy_io_kwargs={"map_location": torch.device(torch.cuda.current_device())},
            backend_args=self.backend_args,
        )

        jit_weights_state_dict = state_dict_enc.state_dict() | state_dict_dec.state_dict()
        jit_weights_state_dict = {
            k: v
            for k, v in jit_weights_state_dict.items()
            # Global variables captured by JIT
            if k
            not in (
                "encoder.patcher.wavelets",
                "encoder.patcher._arange",
                "decoder.unpatcher.wavelets",
                "decoder.unpatcher._arange",
            )
        }

        vae.load_state_dict(jit_weights_state_dict)
        vae.eval()
        for param in vae.parameters():
            param.requires_grad = False
        vae.to(self.dtype)

        self.vae = vae
        self.encoder = self.vae.encode
        self.decoder = self.vae.decode

    def reset_dtype(self, *args, **kwargs):
        """
        Resets the data type of the encoder and decoder to the model's default data type.

        Args:
            *args, **kwargs: Unused, present to allow flexibility in method calls.
        """
        del args, kwargs
        self.vae.to(self.dtype)


class SDVAE(BaseVAE):
    def __init__(self, batch_size=16, count_std: bool = False, is_downsample: bool = True) -> None:
        super().__init__(channel=4, name="sd_vae")
        self.dtype = torch.bfloat16
        self.register_buffer(
            "scale",
            torch.tensor([4.17, 4.62, 3.71, 3.28], dtype=self.dtype).reciprocal().reshape(1, -1, 1, 1),
            persistent=False,
        )
        self.register_buffer(
            "bias",
            -1.0 * torch.tensor([5.81, 3.25, 0.12, -2.15], dtype=self.dtype).reshape(1, -1, 1, 1) * self.scale,
            persistent=False,
        )
        self.batch_size = batch_size
        self.count_std = count_std
        self.is_downsample = is_downsample
        self.load_vae()
        self.reset_dtype()

    def reset_dtype(self, *args, **kwargs):
        del args, kwargs
        self.vae.to(self.dtype)

    @rank0_first
    def load_vae(self) -> None:
        os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
        os.environ["HF_HUB_DISABLE_PROGRESS_BARS"] = "1"
        import diffusers

        vae_name = "stabilityai/sd-vae-ft-mse"
        try:
            vae = diffusers.models.AutoencoderKL.from_pretrained(vae_name, local_files_only=True)
        except:  # noqa: E722
            # Could not load the model from cache; try without local_files_only.
            vae = diffusers.models.AutoencoderKL.from_pretrained(vae_name)
        self.vae = vae.eval().requires_grad_(False)

    @torch.no_grad()
    def encode(self, state: torch.Tensor) -> torch.Tensor:
        """
        state : pixel range [-1, 1]
        """
        if self.is_downsample:
            _h, _w = state.shape[-2:]
            state = F.interpolate(state, size=(_h // 2, _w // 2), mode="bilinear", align_corners=False)
        in_dtype = state.dtype
        state = state.to(self.dtype)
        state = (state + 1.0) / 2.0
        latent_dist = self.vae.encode(state)["latent_dist"]
        mean, std = latent_dist.mean, latent_dist.std
        if self.count_std:
            latent = mean + torch.randn_like(mean) * std
        else:
            latent = mean
        latent = latent * self.scale
        latent = latent + self.bias
        return latent.to(in_dtype)

    @torch.no_grad()
    def decode(self, latent: torch.Tensor) -> torch.Tensor:
        in_dtype = latent.dtype
        latent = latent.to(self.dtype)
        latent = latent - self.bias
        latent = latent / self.scale
        latent = torch.cat([self.vae.decode(batch)["sample"] for batch in latent.split(self.batch_size)])
        if self.is_downsample:
            _h, _w = latent.shape[-2:]
            latent = F.interpolate(latent, size=(_h * 2, _w * 2), mode="bilinear", align_corners=False)
        return latent.to(in_dtype) * 2 - 1.0

    @property
    def spatial_compression_factor(self) -> int:
        return 8