File size: 45,938 Bytes
b6af722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
A general implementation of adaln-modulated VIT-like~(DiT) transformer for video processing.
It allows us easy to switch building blocks used and their order. Its instantiation includes
* transformer on fully flattened tokens
* factored spatial and temporal attention
* factored non-overlap spatial and temporal attention
* mixing of above attention types

Limitations:

* In favor of simplicity and cleanness, many ops are not fused and we can do better
* such as combining mutiple adaln MLPs into one inside one transformer block.
* we use reshape heavily, which may be not efficient when its occurs unnecessary CUDA memory copy

Purpose:
* A prototype for testing different attention types and their combinations
* Idealy, we want to know where we should allocate our resources / FLOPS / memory via extensive empirical studies
"""

from collections.abc import Container
from typing import List, Optional, Tuple

import torch
from einops import rearrange
from megatron.core import parallel_state
from torch import nn
from torch.distributed import ProcessGroup, get_process_group_ranks
from torchvision import transforms

from cosmos_predict1.diffusion.module.attention import get_normalization
from cosmos_predict1.diffusion.training.conditioner import DataType
from cosmos_predict1.diffusion.training.module.blocks import (
    DITBuildingBlock,
    FinalLayer,
    GeneralDITTransformerBlock,
    PatchEmbed,
    SDXLTimestepEmbedding,
    SDXLTimesteps,
)
from cosmos_predict1.diffusion.training.module.position_embedding import (
    LearnableEmb3D,
    LearnableEmb3D_FPS_Aware,
    LearnablePosEmbAxis,
    SinCosPosEmb,
    SinCosPosEmb_FPS_Aware,
    SinCosPosEmbAxis,
    VideoRopePosition3DEmb,
    VideoRopePositionEmb,
)
from cosmos_predict1.diffusion.training.tensor_parallel import gather_along_first_dim, scatter_along_first_dim
from cosmos_predict1.utils import log


class GeneralDIT(nn.Module):
    """
    A general implementation of adaln-modulated VIT-like~(DiT) transformer for video processing.
        Attributes:
        max_img_h (int): Maximum height of the input images.
        max_img_w (int): Maximum width of the input images.
        max_frames (int): Maximum number of frames in the video sequence.
        in_channels (int): Number of input channels (e.g., RGB channels for color images).
        out_channels (int): Number of output channels.
        patch_spatial (tuple of int): Spatial resolution of patches for input processing.
        patch_temporal (int): Temporal resolution of patches for input processing.
        concat_padding_mask (bool): If True, includes a mask channel in the input to handle padding.
        block_config (str): Configuration of the transformer block, e.g., 'FA-CA-MLP', means
            full attention, cross attention, and MLP in sequence in one transformer block.
        model_channels (int): Base number of channels used throughout the model.
        num_blocks (int): Number of residual blocks per resolution in the transformer.
        num_heads (int): Number of heads in the multi-head self-attention layers.
        spatial_attn_win_size (int): Window size for the spatial attention mechanism.
        temporal_attn_win_size (int): Window size for the temporal attention mechanism.
        mlp_ratio (float): Expansion ratio for the MLP (multi-layer perceptron) blocks in the transformer.
        use_memory_save (bool): If True, utilizes checkpointing to reduce memory usage during training. (Deprecated)
        use_checkpoint (bool): If True, utilizes checkpointing to reduce memory usage during training for all blocks.
        crossattn_emb_channels (int): Number of embedding channels used in the cross-attention layers.
        use_cross_attn_mask (bool): If True, applies a mask during cross-attention operations to manage sequence alignment.
        pos_emb_cls (str): Type of positional embeddings used ('sincos' for sinusoidal or other types).
        pos_emb_learnable (bool): Specifies if positional embeddings are learnable.
        pos_emb_interpolation (str): Method used for interpolating positional embeddings, e.g., 'crop' for cropping adjustments.
        block_x_format (str, optional): The format of the input tensor for the transformer block. Defaults to "BTHWD". Only support 'BTHWD' and 'THWBD'.
        legacy_patch_emb (bool): If True, applies 3D convolutional layers for video inputs, otherwise, use Linear! This is for backward compatibility.
        rope_h_extrapolation_ratio (float): Ratio of the height extrapolation for the rope positional embedding.
        rope_w_extrapolation_ratio (float): Ratio of the width extrapolation for the rope positional embedding.
        rope_t_extrapolation_ratio (float): Ratio of the temporal extrapolation for the rope positional embedding.
    Note:
        block_config support block type:
        * spatial_sa, ssa: spatial self attention
        * temporal_sa, tsa: temporal self attention
        * cross_attn, ca: cross attention
        * full_attn: full attention on all flatten tokens
        * mlp, ff: feed forward block
        * use '-' to separate different building blocks, e.g., 'FA-CA-MLP' means full attention, cross attention, and MLP in sequence in one transformer block.

    Example:
        >>> # full attention, cross attention, and MLP
        >>> option1_block_config = 'FA-CA-MLP'
        >>> model_1 = GeneralDIT(
                max_img_h=64, max_img_w=64, max_frames=32, in_channels=16, out_channels=16,
                patch_spatial=2, patch_temporal=1, model_channels=768, num_blocks=10,
                num_heads=16, mlp_ratio=4.0,
                spatial_attn_win_size=1, temporal_attn_win_size=1,
                block_config=option1_block_config
            )
        >>> option2_block_config = 'SSA-CA-MLP-TSA-CA-MLP'
        >>> model_2 = GeneralDIT(
                max_img_h=64, max_img_w=64, max_frames=32, in_channels=16, out_channels=16,
                patch_spatial=2, patch_temporal=1, model_channels=768, num_blocks=10,
                num_heads=16, mlp_ratio=4.0,
                spatial_attn_win_size=1, temporal_attn_win_size=1,
                block_config=option2_block_config
            )
        >>> # option3 model
        >>> model_3 = GeneralDIT(
                max_img_h=64, max_img_w=64, max_frames=32, in_channels=16, out_channels=16,
                patch_spatial=2, patch_temporal=1, model_channels=768, num_blocks=10,
                num_heads=16, mlp_ratio=4.0,
                spatial_attn_win_size=1, temporal_attn_win_size=2,
                block_config=option2_block_config
            )
        >>> # Process input tensor through the model
        >>> output = model(input_tensor)
    """

    def __init__(
        self,
        max_img_h: int,
        max_img_w: int,
        max_frames: int,
        in_channels: int,
        out_channels: int,
        patch_spatial: tuple,
        patch_temporal: int,
        concat_padding_mask: bool = True,
        # attention settings
        block_config: str = "FA-CA-MLP",
        model_channels: int = 768,
        num_blocks: int = 10,
        num_heads: int = 16,
        window_block_indexes: list = [],  # index for window attention block
        window_sizes: list = [],  # window size for window attention block in the order of T, H, W
        spatial_attn_win_size: int = 1,
        temporal_attn_win_size: int = 1,
        mlp_ratio: float = 4.0,
        use_memory_save: bool = False,
        use_checkpoint: bool = False,
        block_x_format: str = "BTHWD",
        # cross attention settings
        crossattn_emb_channels: int = 1024,
        use_cross_attn_mask: bool = False,
        # positional embedding settings
        pos_emb_cls: str = "sincos",
        pos_emb_learnable: bool = False,
        pos_emb_interpolation: str = "crop",
        min_fps: int = 1,  # 1 for getty video
        max_fps: int = 30,  # 120 for getty video but let's use 30
        additional_timestamp_channels: dict = None,  # Follow SDXL, in format of {condition_name : dimension}
        affline_emb_norm: bool = False,  # whether or not to normalize the affine embedding
        use_adaln_lora: bool = False,
        adaln_lora_dim: int = 256,
        layer_mask: list = None,  # whether or not a layer is used. For controlnet encoder
        legacy_patch_emb: bool = True,
        rope_h_extrapolation_ratio: float = 1.0,
        rope_w_extrapolation_ratio: float = 1.0,
        rope_t_extrapolation_ratio: float = 1.0,
        extra_per_block_abs_pos_emb: bool = True,
        extra_per_block_abs_pos_emb_type: str = "learnable",
        extra_h_extrapolation_ratio: float = 1.0,
        extra_w_extrapolation_ratio: float = 1.0,
        extra_t_extrapolation_ratio: float = 1.0,
    ) -> None:
        super().__init__()
        self.max_img_h = max_img_h
        self.max_img_w = max_img_w
        self.max_frames = max_frames
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.patch_spatial = patch_spatial
        self.patch_temporal = patch_temporal
        self.num_heads = num_heads
        self.num_blocks = num_blocks
        self.model_channels = model_channels
        self.use_cross_attn_mask = use_cross_attn_mask
        self.concat_padding_mask = concat_padding_mask
        # positional embedding settings
        self.pos_emb_cls = pos_emb_cls
        self.pos_emb_learnable = pos_emb_learnable
        self.pos_emb_interpolation = pos_emb_interpolation
        self.min_fps = min_fps
        self.max_fps = max_fps
        self.additional_timestamp_channels = additional_timestamp_channels
        self.affline_emb_norm = affline_emb_norm
        self.legacy_patch_emb = legacy_patch_emb
        self.rope_h_extrapolation_ratio = rope_h_extrapolation_ratio
        self.rope_w_extrapolation_ratio = rope_w_extrapolation_ratio
        self.rope_t_extrapolation_ratio = rope_t_extrapolation_ratio
        self.extra_per_block_abs_pos_emb = extra_per_block_abs_pos_emb
        self.extra_per_block_abs_pos_emb_type = extra_per_block_abs_pos_emb_type.lower()
        self.extra_h_extrapolation_ratio = extra_h_extrapolation_ratio
        self.extra_w_extrapolation_ratio = extra_w_extrapolation_ratio
        self.extra_t_extrapolation_ratio = extra_t_extrapolation_ratio

        self.build_patch_embed()
        self.build_pos_embed()
        self.cp_group = None
        self.sequence_parallel = getattr(parallel_state, "sequence_parallel", False)
        self.block_x_format = block_x_format
        self.use_adaln_lora = use_adaln_lora
        self.adaln_lora_dim = adaln_lora_dim
        self.t_embedder = nn.Sequential(
            SDXLTimesteps(model_channels),
            SDXLTimestepEmbedding(model_channels, model_channels, use_adaln_lora=use_adaln_lora),
        )

        self.blocks = nn.ModuleDict()
        self.block_config = block_config
        self.use_memory_save = use_memory_save
        self.use_checkpoint = use_checkpoint

        assert (
            len(window_block_indexes) == 0 or block_config == "FA-CA-MLP"
        ), "Block config must be FA-CA-MLP if using a combination of window attention and global attention"

        layer_mask = [False] * num_blocks if layer_mask is None else layer_mask
        assert (
            len(layer_mask) == num_blocks
        ), f"Layer mask length {len(layer_mask)} does not match num_blocks {num_blocks}"
        for idx in range(num_blocks):
            if layer_mask[idx]:
                continue
            self.blocks[f"block{idx}"] = GeneralDITTransformerBlock(
                x_dim=model_channels,
                context_dim=crossattn_emb_channels,
                num_heads=num_heads,
                block_config=block_config,
                window_sizes=(
                    window_sizes if idx in window_block_indexes else []
                ),  # There will be bug if using "WA-CA-MLP"
                mlp_ratio=mlp_ratio,
                spatial_attn_win_size=spatial_attn_win_size,
                temporal_attn_win_size=temporal_attn_win_size,
                x_format=self.block_x_format,
                use_adaln_lora=use_adaln_lora,
                adaln_lora_dim=adaln_lora_dim,
                use_checkpoint=use_checkpoint,
            )

        self.build_decode_head()
        self.build_additional_timestamp_embedder()
        if self.affline_emb_norm:
            log.critical("Building affine embedding normalization layer")
            self.affline_norm = get_normalization("R", model_channels)
        else:
            self.affline_norm = nn.Identity()
        self.init_weights()

        if self.use_memory_save:
            log.critical("Using checkpointing to save memory! only verified in 14B base model training!")
            for block in self.blocks.values():
                block.set_memory_save()

    def init_weights(self):
        # Initialize transformer layers:
        def _basic_init(module):
            if isinstance(module, nn.Linear):
                torch.nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)

        self.apply(_basic_init)

        # Initialize timestep embedding
        nn.init.normal_(self.t_embedder[1].linear_1.weight, std=0.02)
        if self.t_embedder[1].linear_1.bias is not None:
            nn.init.constant_(self.t_embedder[1].linear_1.bias, 0)
        nn.init.normal_(self.t_embedder[1].linear_2.weight, std=0.02)
        if self.t_embedder[1].linear_2.bias is not None:
            nn.init.constant_(self.t_embedder[1].linear_2.bias, 0)

        # Zero-out adaLN modulation layers in DiT blocks:
        for transformer_block in self.blocks.values():
            for block in transformer_block.blocks:
                nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
                if block.adaLN_modulation[-1].bias is not None:
                    nn.init.constant_(block.adaLN_modulation[-1].bias, 0)

        # Tensor parallel
        if parallel_state.is_initialized() and parallel_state.get_tensor_model_parallel_world_size() > 1:
            self.initialize_tensor_parallel_weights()

    def initialize_tensor_parallel_weights(self):
        """
        Initialize weights for tensor parallel layers.

        This function performs the following steps:
        1. Retrieves the tensor parallel rank.
        2. Saves the current random state.
        3. Sets a new random seed based on the tensor parallel rank.
        4. Initializes weights for attention and MLP layers in each block.
        5. Restores the original random state.

        The use of different random seeds for each rank ensures
        unique initializations across parallel processes.
        """
        tp_rank = parallel_state.get_tensor_model_parallel_rank()

        # Save the current random state
        rng_state = torch.get_rng_state()

        # Set a new random seed based on the tensor parallel rank
        torch.manual_seed(tp_rank)

        for block in self.blocks.values():
            for layer in block.blocks:
                if layer.block_type in ["full_attn", "fa", "cross_attn", "ca"]:
                    # Initialize weights for attention layers
                    torch.nn.init.xavier_uniform_(layer.block.attn.to_q[0].weight)
                    torch.nn.init.xavier_uniform_(layer.block.attn.to_k[0].weight)
                    torch.nn.init.xavier_uniform_(layer.block.attn.to_v[0].weight)
                    torch.nn.init.xavier_uniform_(layer.block.attn.to_out[0].weight)
                elif layer.block_type in ["mlp", "ff"]:
                    # Initialize weights for MLP layers
                    torch.nn.init.xavier_uniform_(layer.block.layer1.weight)
                    torch.nn.init.xavier_uniform_(layer.block.layer2.weight)
                else:
                    raise ValueError(f"Unknown block type {layer.block_type}")

        # Restore the original random state
        torch.set_rng_state(rng_state)

    def build_decode_head(self):
        self.final_layer = FinalLayer(
            hidden_size=self.model_channels,
            spatial_patch_size=self.patch_spatial,
            temporal_patch_size=self.patch_temporal,
            out_channels=self.out_channels,
            use_adaln_lora=self.use_adaln_lora,
            adaln_lora_dim=self.adaln_lora_dim,
        )

    def build_patch_embed(self):
        (
            concat_padding_mask,
            in_channels,
            patch_spatial,
            patch_temporal,
            model_channels,
        ) = (
            self.concat_padding_mask,
            self.in_channels,
            self.patch_spatial,
            self.patch_temporal,
            self.model_channels,
        )
        in_channels = in_channels + 1 if concat_padding_mask else in_channels
        self.x_embedder = PatchEmbed(
            spatial_patch_size=patch_spatial,
            temporal_patch_size=patch_temporal,
            in_channels=in_channels,
            out_channels=model_channels,
            bias=False,
            keep_spatio=True,
            legacy_patch_emb=self.legacy_patch_emb,
        )
        # Initialize patch_embed like nn.Linear (instead of nn.Conv2d)
        if self.legacy_patch_emb:
            w = self.x_embedder.proj.weight.data
            nn.init.xavier_uniform_(w.view([w.shape[0], -1]))

    def build_additional_timestamp_embedder(self):
        if self.additional_timestamp_channels:
            self.additional_timestamp_embedder = nn.ModuleDict()
            for cond_name, cond_emb_channels in self.additional_timestamp_channels.items():
                log.critical(
                    f"Building additional timestamp embedder for {cond_name} with {cond_emb_channels} channels"
                )
                self.additional_timestamp_embedder[cond_name] = nn.Sequential(
                    SDXLTimesteps(cond_emb_channels),
                    SDXLTimestepEmbedding(cond_emb_channels, cond_emb_channels),
                )

    def prepare_additional_timestamp_embedder(self, **kwargs):
        condition_concat = []

        for cond_name, embedder in self.additional_timestamp_embedder.items():
            condition_concat.append(embedder(kwargs[cond_name])[0])
        embedding = torch.cat(condition_concat, dim=1)
        if embedding.shape[1] < self.model_channels:
            embedding = nn.functional.pad(embedding, (0, self.model_channels - embedding.shape[1]))
        return embedding

    def build_pos_embed(self):
        if self.pos_emb_cls == "sincos":
            cls_type = SinCosPosEmb
        elif self.pos_emb_cls == "learnable":
            cls_type = LearnableEmb3D
        elif self.pos_emb_cls == "sincos_fps_aware":
            cls_type = SinCosPosEmb_FPS_Aware
        elif self.pos_emb_cls == "learnable_fps_aware":
            cls_type = LearnableEmb3D_FPS_Aware
        elif self.pos_emb_cls == "rope":
            cls_type = VideoRopePositionEmb
        elif self.pos_emb_cls == "rope3d":
            cls_type = VideoRopePosition3DEmb
        else:
            raise ValueError(f"Unknown pos_emb_cls {self.pos_emb_cls}")

        log.critical(f"Building positional embedding with {self.pos_emb_cls} class, impl {cls_type}")
        kwargs = dict(
            model_channels=self.model_channels,
            len_h=self.max_img_h // self.patch_spatial,
            len_w=self.max_img_w // self.patch_spatial,
            len_t=self.max_frames // self.patch_temporal,
            max_fps=self.max_fps,
            min_fps=self.min_fps,
            is_learnable=self.pos_emb_learnable,
            interpolation=self.pos_emb_interpolation,
            head_dim=self.model_channels // self.num_heads,
            h_extrapolation_ratio=self.rope_h_extrapolation_ratio,
            w_extrapolation_ratio=self.rope_w_extrapolation_ratio,
            t_extrapolation_ratio=self.rope_t_extrapolation_ratio,
        )
        self.pos_embedder = cls_type(
            **kwargs,
        )

        assert self.extra_per_block_abs_pos_emb is True, "extra_per_block_abs_pos_emb must be True"

        if self.extra_per_block_abs_pos_emb:
            assert self.extra_per_block_abs_pos_emb_type in [
                "learnable",
            ], f"Unknown extra_per_block_abs_pos_emb_type {self.extra_per_block_abs_pos_emb_type}"
            kwargs["h_extrapolation_ratio"] = self.extra_h_extrapolation_ratio
            kwargs["w_extrapolation_ratio"] = self.extra_w_extrapolation_ratio
            kwargs["t_extrapolation_ratio"] = self.extra_t_extrapolation_ratio
            self.extra_pos_embedder = LearnablePosEmbAxis(**kwargs)

    def prepare_embedded_sequence(
        self,
        x_B_C_T_H_W: torch.Tensor,
        fps: Optional[torch.Tensor] = None,
        padding_mask: Optional[torch.Tensor] = None,
        latent_condition: Optional[torch.Tensor] = None,
        latent_condition_sigma: Optional[torch.Tensor] = None,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        """
        Prepares an embedded sequence tensor by applying positional embeddings and handling padding masks.

        Args:
            x_B_C_T_H_W (torch.Tensor): video
            fps (Optional[torch.Tensor]): Frames per second tensor to be used for positional embedding when required.
                                    If None, a default value (`self.base_fps`) will be used.
            padding_mask (Optional[torch.Tensor]): current it is not used

        Returns:
            Tuple[torch.Tensor, Optional[torch.Tensor]]:
                - A tensor of shape (B, T, H, W, D) with the embedded sequence.
                - An optional positional embedding tensor, returned only if the positional embedding class
                (`self.pos_emb_cls`) includes 'rope'. Otherwise, None.

        Notes:
            - If `self.concat_padding_mask` is True, a padding mask channel is concatenated to the input tensor.
            - The method of applying positional embeddings depends on the value of `self.pos_emb_cls`.
            - If 'rope' is in `self.pos_emb_cls` (case insensitive), the positional embeddings are generated using
                the `self.pos_embedder` with the shape [T, H, W].
            - If "fps_aware" is in `self.pos_emb_cls`, the positional embeddings are generated using the `self.pos_embedder`
                with the fps tensor.
            - Otherwise, the positional embeddings are generated without considering fps.
        """
        if self.concat_padding_mask:
            padding_mask = transforms.functional.resize(
                padding_mask, list(x_B_C_T_H_W.shape[-2:]), interpolation=transforms.InterpolationMode.NEAREST
            )
            x_B_C_T_H_W = torch.cat(
                [x_B_C_T_H_W, padding_mask.unsqueeze(1).repeat(1, 1, x_B_C_T_H_W.shape[2], 1, 1)], dim=1
            )
        x_B_T_H_W_D = self.x_embedder(x_B_C_T_H_W)

        if self.extra_per_block_abs_pos_emb:
            extra_pos_emb = self.extra_pos_embedder(x_B_T_H_W_D, fps=fps)
        else:
            extra_pos_emb = None

        if "rope" in self.pos_emb_cls.lower():
            return x_B_T_H_W_D, self.pos_embedder(x_B_T_H_W_D, fps=fps), extra_pos_emb

        if "fps_aware" in self.pos_emb_cls:
            x_B_T_H_W_D = x_B_T_H_W_D + self.pos_embedder(x_B_T_H_W_D, fps=fps)  # [B, T, H, W, D]
        else:
            x_B_T_H_W_D = x_B_T_H_W_D + self.pos_embedder(x_B_T_H_W_D)  # [B, T, H, W, D]
        return x_B_T_H_W_D, None, extra_pos_emb

    def decoder_head(
        self,
        x_B_T_H_W_D: torch.Tensor,
        emb_B_D: torch.Tensor,
        crossattn_emb: torch.Tensor,
        origin_shape: Tuple[int, int, int, int, int],  # [B, C, T, H, W]
        crossattn_mask: Optional[torch.Tensor] = None,
        adaln_lora_B_3D: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        del crossattn_emb, crossattn_mask
        B, C, T_before_patchify, H_before_patchify, W_before_patchify = origin_shape
        x_BT_HW_D = rearrange(x_B_T_H_W_D, "B T H W D -> (B T) (H W) D")
        x_BT_HW_D = self.final_layer(x_BT_HW_D, emb_B_D, adaln_lora_B_3D=adaln_lora_B_3D)
        # This is to ensure x_BT_HW_D has the correct shape because
        # when we merge T, H, W into one dimension, x_BT_HW_D has shape (B * T * H * W, 1*1, D).
        x_BT_HW_D = x_BT_HW_D.view(
            B * T_before_patchify // self.patch_temporal,
            H_before_patchify // self.patch_spatial * W_before_patchify // self.patch_spatial,
            -1,
        )
        x_B_D_T_H_W = rearrange(
            x_BT_HW_D,
            "(B T) (H W) (p1 p2 t C) -> B C (T t) (H p1) (W p2)",
            p1=self.patch_spatial,
            p2=self.patch_spatial,
            H=H_before_patchify // self.patch_spatial,
            W=W_before_patchify // self.patch_spatial,
            t=self.patch_temporal,
            B=B,
        )
        return x_B_D_T_H_W

    def forward_before_blocks(
        self,
        x: torch.Tensor,
        timesteps: torch.Tensor,
        crossattn_emb: torch.Tensor,
        crossattn_mask: Optional[torch.Tensor] = None,
        fps: Optional[torch.Tensor] = None,
        image_size: Optional[torch.Tensor] = None,
        padding_mask: Optional[torch.Tensor] = None,
        scalar_feature: Optional[torch.Tensor] = None,
        data_type: Optional[DataType] = DataType.VIDEO,
        latent_condition: Optional[torch.Tensor] = None,
        latent_condition_sigma: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> torch.Tensor:
        """
        Args:
            x: (B, C, T, H, W) tensor of spatial-temp inputs
            timesteps: (B, ) tensor of timesteps
            crossattn_emb: (B, N, D) tensor of cross-attention embeddings
            crossattn_mask: (B, N) tensor of cross-attention masks
        """
        del kwargs
        assert isinstance(
            data_type, DataType
        ), f"Expected DataType, got {type(data_type)}. We need discuss this flag later."
        original_shape = x.shape
        x_B_T_H_W_D, rope_emb_L_1_1_D, extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = self.prepare_embedded_sequence(
            x,
            fps=fps,
            padding_mask=padding_mask,
            latent_condition=latent_condition,
            latent_condition_sigma=latent_condition_sigma,
        )
        # logging affline scale information
        affline_scale_log_info = {}

        timesteps_B_D, adaln_lora_B_3D = self.t_embedder(timesteps.flatten())
        affline_emb_B_D = timesteps_B_D
        affline_scale_log_info["timesteps_B_D"] = timesteps_B_D.detach()

        if scalar_feature is not None:
            raise NotImplementedError("Scalar feature is not implemented yet.")
            timesteps_B_D = timesteps_B_D + scalar_feature.mean(dim=1)

        if self.additional_timestamp_channels:
            additional_cond_B_D = self.prepare_additional_timestamp_embedder(
                bs=x.shape[0],
                fps=fps,
                h=image_size[:, 0],
                w=image_size[:, 1],
                org_h=image_size[:, 2],
                org_w=image_size[:, 3],
            )

            affline_emb_B_D += additional_cond_B_D
            affline_scale_log_info["additional_cond_B_D"] = additional_cond_B_D.detach()

        affline_scale_log_info["affline_emb_B_D"] = affline_emb_B_D.detach()
        affline_emb_B_D = self.affline_norm(affline_emb_B_D)

        # for logging purpose
        self.affline_scale_log_info = affline_scale_log_info
        self.affline_emb = affline_emb_B_D
        self.crossattn_emb = crossattn_emb
        self.crossattn_mask = crossattn_mask

        if self.use_cross_attn_mask:
            crossattn_mask = crossattn_mask[:, None, None, :].to(dtype=torch.bool)  # [B, 1, 1, length]
        else:
            crossattn_mask = None

        if self.blocks["block0"].x_format == "THWBD":
            x = rearrange(x_B_T_H_W_D, "B T H W D -> T H W B D")
            if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None:
                extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = rearrange(
                    extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, "B T H W D -> T H W B D"
                )
            crossattn_emb = rearrange(crossattn_emb, "B M D -> M B D")

            if crossattn_mask:
                crossattn_mask = rearrange(crossattn_mask, "B M -> M B")

            if self.sequence_parallel:
                tp_group = parallel_state.get_tensor_model_parallel_group()
                # Sequence parallel requires the input tensor to be scattered along the first dimension.
                assert self.block_config == "FA-CA-MLP"  # Only support this block config for now
                T, H, W, B, D = x.shape
                # variable name x_T_H_W_B_D is no longer valid. x is reshaped to THW*1*1*b*D and will be reshaped back in FinalLayer
                x = x.view(T * H * W, 1, 1, B, D)
                assert x.shape[0] % parallel_state.get_tensor_model_parallel_world_size() == 0
                x = scatter_along_first_dim(x, tp_group)

                if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None:
                    extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.view(
                        T * H * W, 1, 1, B, D
                    )
                    extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = scatter_along_first_dim(
                        extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, tp_group
                    )

        elif self.blocks["block0"].x_format == "BTHWD":
            x = x_B_T_H_W_D
        else:
            raise ValueError(f"Unknown x_format {self.blocks[0].x_format}")
        output = {
            "x": x,
            "affline_emb_B_D": affline_emb_B_D,
            "crossattn_emb": crossattn_emb,
            "crossattn_mask": crossattn_mask,
            "rope_emb_L_1_1_D": rope_emb_L_1_1_D,
            "adaln_lora_B_3D": adaln_lora_B_3D,
            "original_shape": original_shape,
            "extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D": extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D,
        }
        return output

    def forward_blocks_regular(
        self,
        x,
        affline_emb_B_D,
        crossattn_emb,
        crossattn_mask,
        rope_emb_L_1_1_D,
        adaln_lora_B_3D,
        extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D,
        feature_indices,
        original_shape,
        x_ctrl,
        return_features_early,
    ):
        features = []
        for name, block in self.blocks.items():
            assert (
                self.blocks["block0"].x_format == block.x_format
            ), f"First block has x_format {self.blocks[0].x_format}, got {block.x_format}"
            x = block(
                x,
                affline_emb_B_D,
                crossattn_emb,
                crossattn_mask,
                rope_emb_L_1_1_D=rope_emb_L_1_1_D,
                adaln_lora_B_3D=adaln_lora_B_3D,
                extra_per_block_pos_emb=extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D,
            )

            # Extract features
            block_idx = int(name.split("block")[-1])
            if block_idx in feature_indices:
                B, C, T, H, W = original_shape
                H = H // self.patch_spatial
                W = W // self.patch_spatial
                T = T // self.patch_temporal
                if self.sequence_parallel:
                    x_feat = gather_along_first_dim(x, parallel_state.get_tensor_model_parallel_group())
                    x_B_T_H_W_D = rearrange(x_feat, "(T H W) 1 1 B D -> B T H W D", T=T, H=H, W=W)
                else:
                    x_feat = x
                    if self.blocks["block0"].x_format == "THWBD":
                        x_B_T_H_W_D = rearrange(x_feat, "T H W B D -> B T H W D", T=T, H=H, W=W)
                    elif self.blocks["block0"].x_format == "BTHWD":
                        x_B_T_H_W_D = x_feat
                    else:
                        raise ValueError(f"Unknown x_format {self.blocks[-1].x_format}")

                features.append(x_B_T_H_W_D)

            if x_ctrl is not None and name in x_ctrl:
                x = x + x_ctrl[name]
            # If we have all of the features, we can exit early
            if return_features_early and len(features) == len(feature_indices):
                return features

        if self.blocks["block0"].x_format == "THWBD":
            x_B_T_H_W_D = rearrange(x, "T H W B D -> B T H W D")
        elif self.blocks["block0"].x_format == "BTHWD":
            x_B_T_H_W_D = x
        else:
            raise ValueError(f"Unknown x_format {self.blocks[-1].x_format}")

        x_B_D_T_H_W = self.decoder_head(
            x_B_T_H_W_D=x_B_T_H_W_D,
            emb_B_D=affline_emb_B_D,
            crossattn_emb=None,
            origin_shape=original_shape,
            crossattn_mask=None,
            adaln_lora_B_3D=adaln_lora_B_3D,
        )

        if len(feature_indices) == 0:
            # no features requested, return only the model output
            return x_B_D_T_H_W
        else:
            # score and features; score, features
            return x_B_D_T_H_W, features

    def forward_blocks_memory_save(
        self,
        x,
        affline_emb_B_D,
        crossattn_emb,
        crossattn_mask,
        rope_emb_L_1_1_D,
        adaln_lora_B_3D,
        extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D,
        feature_indices,
        original_shape,
        x_ctrl,
        return_features_early,
    ):
        x_before_gate = 0
        x_skip = rearrange(x, "T H W B D -> (T H W) B D")
        assert self.blocks["block0"].x_format == "THWBD"
        if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None:
            extra_per_block_pos_emb = rearrange(extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, "T H W B D -> (T H W) B D")
        else:
            extra_per_block_pos_emb = None
        gate_L_B_D = 1.0

        features = []
        for name, block in self.blocks.items():
            gate_L_B_D, x_before_gate, x_skip = block(
                x_before_gate,
                x_skip,
                gate_L_B_D,
                affline_emb_B_D,
                crossattn_emb,
                crossattn_mask,
                rope_emb_L_1_1_D=rope_emb_L_1_1_D,
                adaln_lora_B_3D=adaln_lora_B_3D,
                extra_per_block_pos_emb=extra_per_block_pos_emb,
            )

            # Extract features.
            # Convert the block index in the memory save mode to the block index in the regular mode.
            block_idx = int(name.split("block")[-1]) - 1
            if block_idx in feature_indices:
                B, C, T_before_patchify, H_before_patchify, W_before_patchify = original_shape
                H = H_before_patchify // self.patch_spatial
                W = W_before_patchify // self.patch_spatial
                T = T_before_patchify // self.patch_temporal
                if self.sequence_parallel:
                    x_feat = gather_along_first_dim(x_skip, parallel_state.get_tensor_model_parallel_group())
                    x_B_T_H_W_D = rearrange(x_feat, "(T H W) 1 1 B D -> B T H W D", T=T, H=H, W=W)
                else:
                    x_feat = x_skip
                    x_B_T_H_W_D = rearrange(x_feat, "(T H W) B D -> B T H W D", T=T, H=H, W=W)

                features.append(x_B_T_H_W_D)

            new_name = f"block{block_idx}"
            if x_ctrl is not None and new_name in x_ctrl:
                x_ctrl_ = x_ctrl[new_name]
                x_ctrl_ = rearrange(x_ctrl_, "T H W B D -> (T H W) B D")
                x_skip = x_skip + x_ctrl_
            # If we have all of the features, we can exit early
            if return_features_early and len(features) == len(feature_indices):
                return features

        x_THW_B_D_before_gate = x_before_gate
        x_THW_B_D_skip = x_skip

        B, C, T_before_patchify, H_before_patchify, W_before_patchify = original_shape
        x_BT_HW_D_before_gate = rearrange(
            x_THW_B_D_before_gate,
            "(T H W) B D -> (B T) (H W) D",
            T=T_before_patchify // self.patch_temporal,
            H=H_before_patchify // self.patch_spatial,
            W=W_before_patchify // self.patch_spatial,
        )
        x_BT_HW_D_skip = rearrange(
            x_THW_B_D_skip,
            "(T H W) B D -> (B T) (H W) D",
            T=T_before_patchify // self.patch_temporal,
            H=H_before_patchify // self.patch_spatial,
            W=W_before_patchify // self.patch_spatial,
        )

        x_BT_HW_D = self.final_layer.forward_with_memory_save(
            x_BT_HW_D_before_gate=x_BT_HW_D_before_gate,
            x_BT_HW_D_skip=x_BT_HW_D_skip,
            gate_L_B_D=gate_L_B_D,
            emb_B_D=affline_emb_B_D,
            adaln_lora_B_3D=adaln_lora_B_3D,
        )

        # This is to ensure x_BT_HW_D has the correct shape because
        # when we merge T, H, W into one dimension, x_BT_HW_D has shape (B * T * H * W, 1*1, D).
        x_BT_HW_D = x_BT_HW_D.view(
            B * T_before_patchify // self.patch_temporal,
            H_before_patchify // self.patch_spatial * W_before_patchify // self.patch_spatial,
            -1,
        )
        x_B_D_T_H_W = rearrange(
            x_BT_HW_D,
            "(B T) (H W) (p1 p2 t C) -> B C (T t) (H p1) (W p2)",
            p1=self.patch_spatial,
            p2=self.patch_spatial,
            H=H_before_patchify // self.patch_spatial,
            W=W_before_patchify // self.patch_spatial,
            t=self.patch_temporal,
            B=B,
        )
        if len(feature_indices) == 0:
            # no features requested, return only the model output
            return x_B_D_T_H_W
        else:
            # score and features; score, features
            return x_B_D_T_H_W, features

    def forward(
        self,
        x: torch.Tensor,
        timesteps: torch.Tensor,
        crossattn_emb: torch.Tensor,
        crossattn_mask: Optional[torch.Tensor] = None,
        fps: Optional[torch.Tensor] = None,
        image_size: Optional[torch.Tensor] = None,
        padding_mask: Optional[torch.Tensor] = None,
        scalar_feature: Optional[torch.Tensor] = None,
        data_type: Optional[DataType] = DataType.VIDEO,
        x_ctrl: Optional[dict] = None,
        latent_condition: Optional[torch.Tensor] = None,
        latent_condition_sigma: Optional[torch.Tensor] = None,
        feature_indices: Optional[Container[int]] = None,
        return_features_early: bool = False,
        condition_video_augment_sigma: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> torch.Tensor | List[torch.Tensor] | Tuple[torch.Tensor, List[torch.Tensor]]:
        """
        Args:
            x: (B, C, T, H, W) tensor of spatial-temp inputs
            timesteps: (B, ) tensor of timesteps
            crossattn_emb: (B, N, D) tensor of cross-attention embeddings
            crossattn_mask: (B, N) tensor of cross-attention masks
            feature_indices: A set of feature indices (a set of integers) decides which blocks
                to extract features from. If the set is non-empty, then features will be returned.
                By default, feature_indices=None means extract no features.
            return_features_early: If true, the forward pass returns the features once the set is complete.
                This means the forward pass will not finish completely and no final output is returned.
            condition_video_augment_sigma: (B,) used in lvg(long video generation), we add noise with this sigma to augment condition input, the lvg model will condition on the condition_video_augment_sigma value;
                we need forward_before_blocks pass to the forward_before_blocks function.
        """
        if feature_indices is None:
            feature_indices = {}
        if return_features_early and len(feature_indices) == 0:
            # Exit immediately if user requested this.
            return []

        inputs = self.forward_before_blocks(
            x=x,
            timesteps=timesteps,
            crossattn_emb=crossattn_emb,
            crossattn_mask=crossattn_mask,
            fps=fps,
            image_size=image_size,
            padding_mask=padding_mask,
            scalar_feature=scalar_feature,
            data_type=data_type,
            latent_condition=latent_condition,
            latent_condition_sigma=latent_condition_sigma,
            condition_video_augment_sigma=condition_video_augment_sigma,
            **kwargs,
        )
        x, affline_emb_B_D, crossattn_emb, crossattn_mask, rope_emb_L_1_1_D, adaln_lora_B_3D, original_shape = (
            inputs["x"],
            inputs["affline_emb_B_D"],
            inputs["crossattn_emb"],
            inputs["crossattn_mask"],
            inputs["rope_emb_L_1_1_D"],
            inputs["adaln_lora_B_3D"],
            inputs["original_shape"],
        )
        extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = inputs["extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D"]
        if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None:
            assert (
                x.shape == extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape
            ), f"{x.shape} != {extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape} {original_shape}"

        if self.use_memory_save:
            return self.forward_blocks_memory_save(
                x,
                affline_emb_B_D,
                crossattn_emb,
                crossattn_mask,
                rope_emb_L_1_1_D,
                adaln_lora_B_3D,
                extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D,
                feature_indices,
                original_shape,
                x_ctrl,
                return_features_early,
            )

        return self.forward_blocks_regular(
            x,
            affline_emb_B_D,
            crossattn_emb,
            crossattn_mask,
            rope_emb_L_1_1_D,
            adaln_lora_B_3D,
            extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D,
            feature_indices,
            original_shape,
            x_ctrl,
            return_features_early,
        )

    @property
    def fsdp_wrap_block_cls(self):
        return DITBuildingBlock

    def enable_context_parallel(self, cp_group: ProcessGroup):
        cp_ranks = get_process_group_ranks(cp_group)
        cp_size = len(cp_ranks)
        # Set these attributes for spliting the data after embedding.
        self.cp_group = cp_group
        # Set these attributes for computing the loss.
        self.cp_size = cp_size

        self.pos_embedder.enable_context_parallel(cp_group)
        if self.extra_per_block_abs_pos_emb:
            self.extra_pos_embedder.enable_context_parallel(cp_group)
        # Loop through the model to set up context parallel.
        for block in self.blocks.values():
            for layer in block.blocks:
                if layer.block_type in ["mlp", "ff"]:
                    continue
                elif layer.block_type in ["cross_attn", "ca"]:
                    continue
                else:
                    layer.block.attn.attn_op.set_context_parallel_group(cp_group, cp_ranks, torch.cuda.Stream())

        log.debug(f"[CP] Enable context parallelism with size {cp_size}")

    def disable_context_parallel(self):
        self.cp_group = None
        self.cp_size = None

        self.pos_embedder.disable_context_parallel()
        if self.extra_per_block_abs_pos_emb:
            self.extra_pos_embedder.disable_context_parallel()

        # Loop through the model to disable context parallel.
        for block in self.blocks.values():
            for layer in block.blocks:
                if layer.block_type in ["mlp", "ff"]:
                    continue
                elif layer.block_type in ["cross_attn", "ca"]:
                    continue
                else:
                    layer.block.attn.attn_op.cp_group = None
                    layer.block.attn.attn_op.cp_ranks = None
                    layer.block.attn.attn_op.cp_stream = None

        log.debug("[CP] Disable context parallelism.")

    def enable_sequence_parallel(self):
        self._set_sequence_parallel(True)

    def disable_sequence_parallel(self):
        self._set_sequence_parallel(False)

    def _set_sequence_parallel(self, status: bool):
        self.sequence_parallel = status
        self.final_layer.sequence_parallel = status
        for block in self.blocks.values():
            for layer in block.blocks:
                if layer.block_type in ["full_attn", "fa", "cross_attn", "ca"]:
                    layer.block.attn.to_q[0].sequence_parallel = status
                    layer.block.attn.to_k[0].sequence_parallel = status
                    layer.block.attn.to_v[0].sequence_parallel = status
                    layer.block.attn.to_out[0].sequence_parallel = status
                    layer.block.attn.attn_op.sequence_parallel = status
                elif layer.block_type in ["mlp", "ff"]:
                    layer.block.layer1.sequence_parallel = status
                    layer.block.layer2.sequence_parallel = status
                else:
                    raise ValueError(f"Unknown block type {layer.block_type}")

    @property
    def is_context_parallel_enabled(self):
        return self.cp_group is not None