File size: 20,582 Bytes
b6af722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional, Tuple

import torch
from einops import rearrange
from torch import nn
from torchvision import transforms

from cosmos_predict1.diffusion.training.conditioner import DataType
from cosmos_predict1.diffusion.training.context_parallel import split_inputs_cp
from cosmos_predict1.diffusion.training.module.blocks import GeneralDITTransformerBlock, PatchEmbed
from cosmos_predict1.diffusion.training.module.position_embedding import (
    MultiviewSinCosPosEmbAxis,
    MultiviewVideoRopePosition3DEmb,
)
from cosmos_predict1.diffusion.training.networks.general_dit import GeneralDIT
from cosmos_predict1.utils import log


class MultiviewGeneralDIT(GeneralDIT):
    def __init__(
        self,
        *args,
        n_views: int = 3,
        view_condition_dim: int = 3,
        traj_condition_dim: int = 0,
        concat_view_embedding: bool = True,
        concat_traj_embedding: bool = False,
        add_repeat_frame_embedding: bool = False,
        **kwargs,
    ):
        self.n_views = n_views
        self.view_condition_dim = view_condition_dim
        self.concat_view_embedding = concat_view_embedding
        self.traj_condition_dim = traj_condition_dim
        self.concat_traj_embedding = concat_traj_embedding
        self.add_repeat_frame_embedding = add_repeat_frame_embedding

        super().__init__(*args, **kwargs)
        # reinit self.blocks
        del self.blocks
        self.blocks = nn.ModuleDict()

        layer_mask = [False] * self.num_blocks if kwargs["layer_mask"] is None else kwargs["layer_mask"]
        assert (
            len(layer_mask) == self.num_blocks
        ), f"Layer mask length {len(layer_mask)} does not match num_blocks {self.num_blocks}"
        for idx in range(self.num_blocks):
            if layer_mask[idx]:
                continue
            self.blocks[f"block{idx}"] = GeneralDITTransformerBlock(
                x_dim=self.model_channels,
                context_dim=kwargs["crossattn_emb_channels"],
                num_heads=self.num_heads,
                block_config=self.block_config,
                window_sizes=(
                    kwargs["window_sizes"] if idx in kwargs["window_block_indexes"] else []
                ),  # There will be bug if using "WA-CA-MLP"
                mlp_ratio=kwargs["mlp_ratio"],
                spatial_attn_win_size=kwargs["spatial_attn_win_size"],
                temporal_attn_win_size=kwargs["temporal_attn_win_size"],
                x_format=self.block_x_format,
                use_adaln_lora=self.use_adaln_lora,
                adaln_lora_dim=self.adaln_lora_dim,
                n_views=self.n_views,
            )
        self.view_embeddings = nn.Embedding(n_views, view_condition_dim)  # Learnable embedding layer

        if self.concat_traj_embedding:
            self.traj_embeddings = nn.Linear(192, self.traj_condition_dim)  # Learnable embedding layer
        if self.add_repeat_frame_embedding:
            self.repeat_frame_embedding = nn.Linear(1, view_condition_dim)  # Learnable embedding layer

        self.init_weights()

    def build_patch_embed(self):
        (
            concat_padding_mask,
            in_channels,
            patch_spatial,
            patch_temporal,
            model_channels,
            view_condition_dim,
            traj_condition_dim,
        ) = (
            self.concat_padding_mask,
            self.in_channels,
            self.patch_spatial,
            self.patch_temporal,
            self.model_channels,
            self.view_condition_dim,
            self.traj_condition_dim,
        )
        if self.concat_view_embedding:
            in_channels = in_channels + view_condition_dim if view_condition_dim > 0 else in_channels

        if self.concat_traj_embedding:
            in_channels = in_channels + traj_condition_dim if traj_condition_dim > 0 else in_channels

        in_channels = in_channels + 1 if concat_padding_mask else in_channels

        self.x_embedder = PatchEmbed(
            spatial_patch_size=patch_spatial,
            temporal_patch_size=patch_temporal,
            in_channels=in_channels,
            out_channels=model_channels,
            bias=False,
            keep_spatio=True,
            legacy_patch_emb=self.legacy_patch_emb,
        )

        # Initialize patch_embed like nn.Linear (instead of nn.Conv2d)
        if self.legacy_patch_emb:
            w = self.x_embedder.proj.weight.data
            nn.init.xavier_uniform_(w.view([w.shape[0], -1]))

    def build_pos_embed(self):
        if self.pos_emb_cls == "rope3d":
            cls_type = MultiviewVideoRopePosition3DEmb
        else:
            raise ValueError(f"Unknown pos_emb_cls {self.pos_emb_cls}")

        log.critical(f"Building positional embedding with {self.pos_emb_cls} class, impl {cls_type}")
        kwargs = dict(
            model_channels=self.model_channels,
            len_h=self.max_img_h // self.patch_spatial,
            len_w=self.max_img_w // self.patch_spatial,
            len_t=self.max_frames // self.patch_temporal,
            max_fps=self.max_fps,
            min_fps=self.min_fps,
            is_learnable=self.pos_emb_learnable,
            interpolation=self.pos_emb_interpolation,
            head_dim=self.model_channels // self.num_heads,
            h_extrapolation_ratio=self.rope_h_extrapolation_ratio,
            w_extrapolation_ratio=self.rope_w_extrapolation_ratio,
            t_extrapolation_ratio=self.rope_t_extrapolation_ratio,
            n_views=self.n_views,
        )
        self.pos_embedder = cls_type(
            **kwargs,
        )

        assert self.extra_per_block_abs_pos_emb is True, "extra_per_block_abs_pos_emb must be True"

        if self.extra_per_block_abs_pos_emb:
            assert self.extra_per_block_abs_pos_emb_type in [
                "sincos",
            ], f"Unknown extra_per_block_abs_pos_emb_type {self.extra_per_block_abs_pos_emb_type}"
            kwargs["h_extrapolation_ratio"] = self.extra_h_extrapolation_ratio
            kwargs["w_extrapolation_ratio"] = self.extra_w_extrapolation_ratio
            kwargs["t_extrapolation_ratio"] = self.extra_t_extrapolation_ratio
            self.extra_pos_embedder = MultiviewSinCosPosEmbAxis(**kwargs)

    def forward_before_blocks(
        self,
        x: torch.Tensor,
        timesteps: torch.Tensor,
        crossattn_emb: torch.Tensor,
        crossattn_mask: Optional[torch.Tensor] = None,
        fps: Optional[torch.Tensor] = None,
        image_size: Optional[torch.Tensor] = None,
        padding_mask: Optional[torch.Tensor] = None,
        scalar_feature: Optional[torch.Tensor] = None,
        data_type: Optional[DataType] = DataType.VIDEO,
        latent_condition: Optional[torch.Tensor] = None,
        latent_condition_sigma: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> torch.Tensor:
        """
        Args:
            x: (B, C, T, H, W) tensor of spatial-temp inputs
            timesteps: (B, ) tensor of timesteps
            crossattn_emb: (B, N, D) tensor of cross-attention embeddings
            crossattn_mask: (B, N) tensor of cross-attention masks
        """
        trajectory = kwargs.get("trajectory", None)
        frame_repeat = kwargs.get("frame_repeat", None)

        del kwargs
        assert isinstance(
            data_type, DataType
        ), f"Expected DataType, got {type(data_type)}. We need discuss this flag later."
        original_shape = x.shape
        x_B_T_H_W_D, rope_emb_L_1_1_D, extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = self.prepare_embedded_sequence(
            x,
            fps=fps,
            padding_mask=padding_mask,
            latent_condition=latent_condition,
            latent_condition_sigma=latent_condition_sigma,
            trajectory=trajectory,
            frame_repeat=frame_repeat,
        )
        # logging affline scale information
        affline_scale_log_info = {}

        timesteps_B_D, adaln_lora_B_3D = self.t_embedder(timesteps.flatten())
        affline_emb_B_D = timesteps_B_D
        affline_scale_log_info["timesteps_B_D"] = timesteps_B_D.detach()

        if scalar_feature is not None:
            raise NotImplementedError("Scalar feature is not implemented yet.")
            timesteps_B_D = timesteps_B_D + scalar_feature.mean(dim=1)

        if self.additional_timestamp_channels:
            additional_cond_B_D = self.prepare_additional_timestamp_embedder(
                bs=x.shape[0],
                fps=fps,
                h=image_size[:, 0],
                w=image_size[:, 1],
                org_h=image_size[:, 2],
                org_w=image_size[:, 3],
            )

            affline_emb_B_D += additional_cond_B_D
            affline_scale_log_info["additional_cond_B_D"] = additional_cond_B_D.detach()

        affline_scale_log_info["affline_emb_B_D"] = affline_emb_B_D.detach()
        affline_emb_B_D = self.affline_norm(affline_emb_B_D)

        # for logging purpose
        self.affline_scale_log_info = affline_scale_log_info
        self.affline_emb = affline_emb_B_D
        self.crossattn_emb = crossattn_emb
        self.crossattn_mask = crossattn_mask

        if self.use_cross_attn_mask:
            crossattn_mask = crossattn_mask[:, None, None, :].to(dtype=torch.bool)  # [B, 1, 1, length]
        else:
            crossattn_mask = None

        if self.blocks["block0"].x_format == "THWBD":
            x = rearrange(x_B_T_H_W_D, "B T H W D -> T H W B D")
            if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None:
                extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = rearrange(
                    extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, "B T H W D -> T H W B D"
                )
            crossattn_emb = rearrange(crossattn_emb, "B M D -> M B D")

            if crossattn_mask:
                crossattn_mask = rearrange(crossattn_mask, "B M -> M B")

            if self.sequence_parallel:
                tp_group = parallel_state.get_tensor_model_parallel_group()
                # Sequence parallel requires the input tensor to be scattered along the first dimension.
                assert self.block_config == "FA-CA-MLP"  # Only support this block config for now
                T, H, W, B, D = x.shape
                # variable name x_T_H_W_B_D is no longer valid. x is reshaped to THW*1*1*b*D and will be reshaped back in FinalLayer
                x = x.view(T * H * W, 1, 1, B, D)
                assert x.shape[0] % parallel_state.get_tensor_model_parallel_world_size() == 0
                x = scatter_along_first_dim(x, tp_group)

                if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None:
                    extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.view(
                        T * H * W, 1, 1, B, D
                    )
                    extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = scatter_along_first_dim(
                        extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, tp_group
                    )

        elif self.blocks["block0"].x_format == "BTHWD":
            x = x_B_T_H_W_D
        else:
            raise ValueError(f"Unknown x_format {self.blocks[0].x_format}")
        output = {
            "x": x,
            "affline_emb_B_D": affline_emb_B_D,
            "crossattn_emb": crossattn_emb,
            "crossattn_mask": crossattn_mask,
            "rope_emb_L_1_1_D": rope_emb_L_1_1_D,
            "adaln_lora_B_3D": adaln_lora_B_3D,
            "original_shape": original_shape,
            "extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D": extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D,
        }
        return output

    def prepare_embedded_sequence(
        self,
        x_B_C_T_H_W: torch.Tensor,
        fps: Optional[torch.Tensor] = None,
        padding_mask: Optional[torch.Tensor] = None,
        latent_condition: Optional[torch.Tensor] = None,
        latent_condition_sigma: Optional[torch.Tensor] = None,
        trajectory: Optional[torch.Tensor] = None,
        frame_repeat: Optional[torch.Tensor] = None,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        """
        Prepares an embedded sequence tensor by applying positional embeddings and handling padding masks.

        Args:
            x_B_C_T_H_W (torch.Tensor): video
            fps (Optional[torch.Tensor]): Frames per second tensor to be used for positional embedding when required.
                                    If None, a default value (`self.base_fps`) will be used.
            padding_mask (Optional[torch.Tensor]): current it is not used

        Returns:
            Tuple[torch.Tensor, Optional[torch.Tensor]]:
                - A tensor of shape (B, T, H, W, D) with the embedded sequence.
                - An optional positional embedding tensor, returned only if the positional embedding class
                (`self.pos_emb_cls`) includes 'rope'. Otherwise, None.

        Notes:
            - If `self.concat_padding_mask` is True, a padding mask channel is concatenated to the input tensor.
            - The method of applying positional embeddings depends on the value of `self.pos_emb_cls`.
            - If 'rope' is in `self.pos_emb_cls` (case insensitive), the positional embeddings are generated using
                the `self.pos_embedder` with the shape [T, H, W].
            - If "fps_aware" is in `self.pos_emb_cls`, the positional embeddings are generated using the `self.pos_embedder`
                with the fps tensor.
            - Otherwise, the positional embeddings are generated without considering fps.
        """
        if self.concat_padding_mask:
            padding_mask = transforms.functional.resize(
                padding_mask, list(x_B_C_T_H_W.shape[-2:]), interpolation=transforms.InterpolationMode.NEAREST
            )
            x_B_C_T_H_W = torch.cat(
                [x_B_C_T_H_W, padding_mask.unsqueeze(1).repeat(1, 1, x_B_C_T_H_W.shape[2], 1, 1)], dim=1
            )

        view_indices = torch.arange(self.n_views).to(x_B_C_T_H_W.device)  # View indices [0, 1, ..., V-1]
        view_embedding = self.view_embeddings(view_indices)  # Shape: [V, embedding_dim]
        view_embedding = rearrange(view_embedding, "V D -> D V")
        view_embedding = view_embedding.unsqueeze(0).unsqueeze(3).unsqueeze(4).unsqueeze(5)  # Shape: [1, D, V, 1, 1, 1]

        if self.add_repeat_frame_embedding:
            if frame_repeat is None:
                frame_repeat = (
                    torch.zeros([x_B_C_T_H_W.shape[0], view_embedding.shape[1]])
                    .to(view_embedding.device)
                    .to(view_embedding.dtype)
                )
            frame_repeat_embedding = self.repeat_frame_embedding(frame_repeat.unsqueeze(-1))
            frame_repeat_embedding = rearrange(frame_repeat_embedding, "B V D -> B D V")
            view_embedding = view_embedding + frame_repeat_embedding.unsqueeze(3).unsqueeze(4).unsqueeze(5)

        x_B_C_V_T_H_W = rearrange(x_B_C_T_H_W, "B C (V T) H W -> B C V T H W", V=self.n_views)
        view_embedding = view_embedding.expand(
            x_B_C_V_T_H_W.shape[0],
            view_embedding.shape[1],
            view_embedding.shape[2],
            x_B_C_V_T_H_W.shape[3],
            x_B_C_V_T_H_W.shape[4],
            x_B_C_V_T_H_W.shape[5],
        )  # Shape: [B, V, 3, t, H, W]
        if self.concat_traj_embedding:
            traj_emb = self.traj_embeddings(trajectory)
            traj_emb = traj_emb.unsqueeze(2).unsqueeze(3).unsqueeze(4).unsqueeze(5)
            traj_emb = traj_emb.expand(
                x_B_C_V_T_H_W.shape[0],
                traj_emb.shape[1],
                view_embedding.shape[2],
                x_B_C_V_T_H_W.shape[3],
                x_B_C_V_T_H_W.shape[4],
                x_B_C_V_T_H_W.shape[5],
            )  # Shape: [B, V, 3, t, H, W]

            x_B_C_V_T_H_W = torch.cat([x_B_C_V_T_H_W, view_embedding, traj_emb], dim=1)
        else:
            x_B_C_V_T_H_W = torch.cat([x_B_C_V_T_H_W, view_embedding], dim=1)

        x_B_C_T_H_W = rearrange(x_B_C_V_T_H_W, " B C V T H W -> B C (V T) H W", V=self.n_views)
        x_B_T_H_W_D = self.x_embedder(x_B_C_T_H_W)

        if self.extra_per_block_abs_pos_emb:
            extra_pos_emb = self.extra_pos_embedder(x_B_T_H_W_D, fps=fps)
        else:
            extra_pos_emb = None

        if "rope" in self.pos_emb_cls.lower():
            return x_B_T_H_W_D, self.pos_embedder(x_B_T_H_W_D, fps=fps), extra_pos_emb

        if "fps_aware" in self.pos_emb_cls:
            x_B_T_H_W_D = x_B_T_H_W_D + self.pos_embedder(x_B_T_H_W_D, fps=fps)  # [B, T, H, W, D]
        else:
            x_B_T_H_W_D = x_B_T_H_W_D + self.pos_embedder(x_B_T_H_W_D)  # [B, T, H, W, D]
        return x_B_T_H_W_D, None, extra_pos_emb


class VideoExtendGeneralDIT(MultiviewGeneralDIT):
    def __init__(self, *args, in_channels, **kwargs):
        # extra channel for video condition mask
        super().__init__(*args, in_channels=in_channels + 1, **kwargs)
        log.info(f"VideoExtendGeneralDIT in_channels: {in_channels + 1}")

    def forward(
        self,
        x: torch.Tensor,
        timesteps: torch.Tensor,
        crossattn_emb: torch.Tensor,
        crossattn_mask: Optional[torch.Tensor] = None,
        fps: Optional[torch.Tensor] = None,
        image_size: Optional[torch.Tensor] = None,
        padding_mask: Optional[torch.Tensor] = None,
        scalar_feature: Optional[torch.Tensor] = None,
        data_type: Optional[DataType] = DataType.VIDEO,
        video_cond_bool: Optional[torch.Tensor] = None,
        condition_video_indicator: Optional[torch.Tensor] = None,
        condition_video_input_mask: Optional[torch.Tensor] = None,
        condition_video_augment_sigma: Optional[torch.Tensor] = None,
        condition_video_pose: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> torch.Tensor:
        """Args:
        condition_video_augment_sigma: (B) tensor of sigma value for the conditional input augmentation
        condition_video_pose: (B, 1, T, H, W) tensor of pose condition
        """
        B, C, T, H, W = x.shape

        if data_type == DataType.VIDEO:
            assert (
                condition_video_input_mask is not None
            ), "condition_video_input_mask is required for video data type; check if your model_obj is extend_model.FSDPDiffusionModel or the base DiffusionModel"
            if self.cp_group is not None:
                condition_video_input_mask = rearrange(
                    condition_video_input_mask, "B C (V T) H W -> B C V T H W", V=self.n_views
                )
                condition_video_input_mask = split_inputs_cp(
                    condition_video_input_mask, seq_dim=3, cp_group=self.cp_group
                )
                condition_video_input_mask = rearrange(
                    condition_video_input_mask, "B C V T H W -> B C (V T) H W", V=self.n_views
                )
            input_list = [x, condition_video_input_mask]
            if condition_video_pose is not None:
                if condition_video_pose.shape[2] > T:
                    log.warning(
                        f"condition_video_pose has more frames than the input video: {condition_video_pose.shape} > {x.shape}"
                    )
                    condition_video_pose = condition_video_pose[:, :, :T, :, :].contiguous()
                input_list.append(condition_video_pose)
            x = torch.cat(
                input_list,
                dim=1,
            )

        return super().forward(
            x=x,
            timesteps=timesteps,
            crossattn_emb=crossattn_emb,
            crossattn_mask=crossattn_mask,
            fps=fps,
            image_size=image_size,
            padding_mask=padding_mask,
            scalar_feature=scalar_feature,
            data_type=data_type,
            condition_video_augment_sigma=condition_video_augment_sigma,
            **kwargs,
        )