Spaces:
Build error
Build error
File size: 20,582 Bytes
b6af722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Tuple
import torch
from einops import rearrange
from torch import nn
from torchvision import transforms
from cosmos_predict1.diffusion.training.conditioner import DataType
from cosmos_predict1.diffusion.training.context_parallel import split_inputs_cp
from cosmos_predict1.diffusion.training.module.blocks import GeneralDITTransformerBlock, PatchEmbed
from cosmos_predict1.diffusion.training.module.position_embedding import (
MultiviewSinCosPosEmbAxis,
MultiviewVideoRopePosition3DEmb,
)
from cosmos_predict1.diffusion.training.networks.general_dit import GeneralDIT
from cosmos_predict1.utils import log
class MultiviewGeneralDIT(GeneralDIT):
def __init__(
self,
*args,
n_views: int = 3,
view_condition_dim: int = 3,
traj_condition_dim: int = 0,
concat_view_embedding: bool = True,
concat_traj_embedding: bool = False,
add_repeat_frame_embedding: bool = False,
**kwargs,
):
self.n_views = n_views
self.view_condition_dim = view_condition_dim
self.concat_view_embedding = concat_view_embedding
self.traj_condition_dim = traj_condition_dim
self.concat_traj_embedding = concat_traj_embedding
self.add_repeat_frame_embedding = add_repeat_frame_embedding
super().__init__(*args, **kwargs)
# reinit self.blocks
del self.blocks
self.blocks = nn.ModuleDict()
layer_mask = [False] * self.num_blocks if kwargs["layer_mask"] is None else kwargs["layer_mask"]
assert (
len(layer_mask) == self.num_blocks
), f"Layer mask length {len(layer_mask)} does not match num_blocks {self.num_blocks}"
for idx in range(self.num_blocks):
if layer_mask[idx]:
continue
self.blocks[f"block{idx}"] = GeneralDITTransformerBlock(
x_dim=self.model_channels,
context_dim=kwargs["crossattn_emb_channels"],
num_heads=self.num_heads,
block_config=self.block_config,
window_sizes=(
kwargs["window_sizes"] if idx in kwargs["window_block_indexes"] else []
), # There will be bug if using "WA-CA-MLP"
mlp_ratio=kwargs["mlp_ratio"],
spatial_attn_win_size=kwargs["spatial_attn_win_size"],
temporal_attn_win_size=kwargs["temporal_attn_win_size"],
x_format=self.block_x_format,
use_adaln_lora=self.use_adaln_lora,
adaln_lora_dim=self.adaln_lora_dim,
n_views=self.n_views,
)
self.view_embeddings = nn.Embedding(n_views, view_condition_dim) # Learnable embedding layer
if self.concat_traj_embedding:
self.traj_embeddings = nn.Linear(192, self.traj_condition_dim) # Learnable embedding layer
if self.add_repeat_frame_embedding:
self.repeat_frame_embedding = nn.Linear(1, view_condition_dim) # Learnable embedding layer
self.init_weights()
def build_patch_embed(self):
(
concat_padding_mask,
in_channels,
patch_spatial,
patch_temporal,
model_channels,
view_condition_dim,
traj_condition_dim,
) = (
self.concat_padding_mask,
self.in_channels,
self.patch_spatial,
self.patch_temporal,
self.model_channels,
self.view_condition_dim,
self.traj_condition_dim,
)
if self.concat_view_embedding:
in_channels = in_channels + view_condition_dim if view_condition_dim > 0 else in_channels
if self.concat_traj_embedding:
in_channels = in_channels + traj_condition_dim if traj_condition_dim > 0 else in_channels
in_channels = in_channels + 1 if concat_padding_mask else in_channels
self.x_embedder = PatchEmbed(
spatial_patch_size=patch_spatial,
temporal_patch_size=patch_temporal,
in_channels=in_channels,
out_channels=model_channels,
bias=False,
keep_spatio=True,
legacy_patch_emb=self.legacy_patch_emb,
)
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d)
if self.legacy_patch_emb:
w = self.x_embedder.proj.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
def build_pos_embed(self):
if self.pos_emb_cls == "rope3d":
cls_type = MultiviewVideoRopePosition3DEmb
else:
raise ValueError(f"Unknown pos_emb_cls {self.pos_emb_cls}")
log.critical(f"Building positional embedding with {self.pos_emb_cls} class, impl {cls_type}")
kwargs = dict(
model_channels=self.model_channels,
len_h=self.max_img_h // self.patch_spatial,
len_w=self.max_img_w // self.patch_spatial,
len_t=self.max_frames // self.patch_temporal,
max_fps=self.max_fps,
min_fps=self.min_fps,
is_learnable=self.pos_emb_learnable,
interpolation=self.pos_emb_interpolation,
head_dim=self.model_channels // self.num_heads,
h_extrapolation_ratio=self.rope_h_extrapolation_ratio,
w_extrapolation_ratio=self.rope_w_extrapolation_ratio,
t_extrapolation_ratio=self.rope_t_extrapolation_ratio,
n_views=self.n_views,
)
self.pos_embedder = cls_type(
**kwargs,
)
assert self.extra_per_block_abs_pos_emb is True, "extra_per_block_abs_pos_emb must be True"
if self.extra_per_block_abs_pos_emb:
assert self.extra_per_block_abs_pos_emb_type in [
"sincos",
], f"Unknown extra_per_block_abs_pos_emb_type {self.extra_per_block_abs_pos_emb_type}"
kwargs["h_extrapolation_ratio"] = self.extra_h_extrapolation_ratio
kwargs["w_extrapolation_ratio"] = self.extra_w_extrapolation_ratio
kwargs["t_extrapolation_ratio"] = self.extra_t_extrapolation_ratio
self.extra_pos_embedder = MultiviewSinCosPosEmbAxis(**kwargs)
def forward_before_blocks(
self,
x: torch.Tensor,
timesteps: torch.Tensor,
crossattn_emb: torch.Tensor,
crossattn_mask: Optional[torch.Tensor] = None,
fps: Optional[torch.Tensor] = None,
image_size: Optional[torch.Tensor] = None,
padding_mask: Optional[torch.Tensor] = None,
scalar_feature: Optional[torch.Tensor] = None,
data_type: Optional[DataType] = DataType.VIDEO,
latent_condition: Optional[torch.Tensor] = None,
latent_condition_sigma: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
"""
Args:
x: (B, C, T, H, W) tensor of spatial-temp inputs
timesteps: (B, ) tensor of timesteps
crossattn_emb: (B, N, D) tensor of cross-attention embeddings
crossattn_mask: (B, N) tensor of cross-attention masks
"""
trajectory = kwargs.get("trajectory", None)
frame_repeat = kwargs.get("frame_repeat", None)
del kwargs
assert isinstance(
data_type, DataType
), f"Expected DataType, got {type(data_type)}. We need discuss this flag later."
original_shape = x.shape
x_B_T_H_W_D, rope_emb_L_1_1_D, extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = self.prepare_embedded_sequence(
x,
fps=fps,
padding_mask=padding_mask,
latent_condition=latent_condition,
latent_condition_sigma=latent_condition_sigma,
trajectory=trajectory,
frame_repeat=frame_repeat,
)
# logging affline scale information
affline_scale_log_info = {}
timesteps_B_D, adaln_lora_B_3D = self.t_embedder(timesteps.flatten())
affline_emb_B_D = timesteps_B_D
affline_scale_log_info["timesteps_B_D"] = timesteps_B_D.detach()
if scalar_feature is not None:
raise NotImplementedError("Scalar feature is not implemented yet.")
timesteps_B_D = timesteps_B_D + scalar_feature.mean(dim=1)
if self.additional_timestamp_channels:
additional_cond_B_D = self.prepare_additional_timestamp_embedder(
bs=x.shape[0],
fps=fps,
h=image_size[:, 0],
w=image_size[:, 1],
org_h=image_size[:, 2],
org_w=image_size[:, 3],
)
affline_emb_B_D += additional_cond_B_D
affline_scale_log_info["additional_cond_B_D"] = additional_cond_B_D.detach()
affline_scale_log_info["affline_emb_B_D"] = affline_emb_B_D.detach()
affline_emb_B_D = self.affline_norm(affline_emb_B_D)
# for logging purpose
self.affline_scale_log_info = affline_scale_log_info
self.affline_emb = affline_emb_B_D
self.crossattn_emb = crossattn_emb
self.crossattn_mask = crossattn_mask
if self.use_cross_attn_mask:
crossattn_mask = crossattn_mask[:, None, None, :].to(dtype=torch.bool) # [B, 1, 1, length]
else:
crossattn_mask = None
if self.blocks["block0"].x_format == "THWBD":
x = rearrange(x_B_T_H_W_D, "B T H W D -> T H W B D")
if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None:
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = rearrange(
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, "B T H W D -> T H W B D"
)
crossattn_emb = rearrange(crossattn_emb, "B M D -> M B D")
if crossattn_mask:
crossattn_mask = rearrange(crossattn_mask, "B M -> M B")
if self.sequence_parallel:
tp_group = parallel_state.get_tensor_model_parallel_group()
# Sequence parallel requires the input tensor to be scattered along the first dimension.
assert self.block_config == "FA-CA-MLP" # Only support this block config for now
T, H, W, B, D = x.shape
# variable name x_T_H_W_B_D is no longer valid. x is reshaped to THW*1*1*b*D and will be reshaped back in FinalLayer
x = x.view(T * H * W, 1, 1, B, D)
assert x.shape[0] % parallel_state.get_tensor_model_parallel_world_size() == 0
x = scatter_along_first_dim(x, tp_group)
if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None:
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.view(
T * H * W, 1, 1, B, D
)
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = scatter_along_first_dim(
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, tp_group
)
elif self.blocks["block0"].x_format == "BTHWD":
x = x_B_T_H_W_D
else:
raise ValueError(f"Unknown x_format {self.blocks[0].x_format}")
output = {
"x": x,
"affline_emb_B_D": affline_emb_B_D,
"crossattn_emb": crossattn_emb,
"crossattn_mask": crossattn_mask,
"rope_emb_L_1_1_D": rope_emb_L_1_1_D,
"adaln_lora_B_3D": adaln_lora_B_3D,
"original_shape": original_shape,
"extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D": extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D,
}
return output
def prepare_embedded_sequence(
self,
x_B_C_T_H_W: torch.Tensor,
fps: Optional[torch.Tensor] = None,
padding_mask: Optional[torch.Tensor] = None,
latent_condition: Optional[torch.Tensor] = None,
latent_condition_sigma: Optional[torch.Tensor] = None,
trajectory: Optional[torch.Tensor] = None,
frame_repeat: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""
Prepares an embedded sequence tensor by applying positional embeddings and handling padding masks.
Args:
x_B_C_T_H_W (torch.Tensor): video
fps (Optional[torch.Tensor]): Frames per second tensor to be used for positional embedding when required.
If None, a default value (`self.base_fps`) will be used.
padding_mask (Optional[torch.Tensor]): current it is not used
Returns:
Tuple[torch.Tensor, Optional[torch.Tensor]]:
- A tensor of shape (B, T, H, W, D) with the embedded sequence.
- An optional positional embedding tensor, returned only if the positional embedding class
(`self.pos_emb_cls`) includes 'rope'. Otherwise, None.
Notes:
- If `self.concat_padding_mask` is True, a padding mask channel is concatenated to the input tensor.
- The method of applying positional embeddings depends on the value of `self.pos_emb_cls`.
- If 'rope' is in `self.pos_emb_cls` (case insensitive), the positional embeddings are generated using
the `self.pos_embedder` with the shape [T, H, W].
- If "fps_aware" is in `self.pos_emb_cls`, the positional embeddings are generated using the `self.pos_embedder`
with the fps tensor.
- Otherwise, the positional embeddings are generated without considering fps.
"""
if self.concat_padding_mask:
padding_mask = transforms.functional.resize(
padding_mask, list(x_B_C_T_H_W.shape[-2:]), interpolation=transforms.InterpolationMode.NEAREST
)
x_B_C_T_H_W = torch.cat(
[x_B_C_T_H_W, padding_mask.unsqueeze(1).repeat(1, 1, x_B_C_T_H_W.shape[2], 1, 1)], dim=1
)
view_indices = torch.arange(self.n_views).to(x_B_C_T_H_W.device) # View indices [0, 1, ..., V-1]
view_embedding = self.view_embeddings(view_indices) # Shape: [V, embedding_dim]
view_embedding = rearrange(view_embedding, "V D -> D V")
view_embedding = view_embedding.unsqueeze(0).unsqueeze(3).unsqueeze(4).unsqueeze(5) # Shape: [1, D, V, 1, 1, 1]
if self.add_repeat_frame_embedding:
if frame_repeat is None:
frame_repeat = (
torch.zeros([x_B_C_T_H_W.shape[0], view_embedding.shape[1]])
.to(view_embedding.device)
.to(view_embedding.dtype)
)
frame_repeat_embedding = self.repeat_frame_embedding(frame_repeat.unsqueeze(-1))
frame_repeat_embedding = rearrange(frame_repeat_embedding, "B V D -> B D V")
view_embedding = view_embedding + frame_repeat_embedding.unsqueeze(3).unsqueeze(4).unsqueeze(5)
x_B_C_V_T_H_W = rearrange(x_B_C_T_H_W, "B C (V T) H W -> B C V T H W", V=self.n_views)
view_embedding = view_embedding.expand(
x_B_C_V_T_H_W.shape[0],
view_embedding.shape[1],
view_embedding.shape[2],
x_B_C_V_T_H_W.shape[3],
x_B_C_V_T_H_W.shape[4],
x_B_C_V_T_H_W.shape[5],
) # Shape: [B, V, 3, t, H, W]
if self.concat_traj_embedding:
traj_emb = self.traj_embeddings(trajectory)
traj_emb = traj_emb.unsqueeze(2).unsqueeze(3).unsqueeze(4).unsqueeze(5)
traj_emb = traj_emb.expand(
x_B_C_V_T_H_W.shape[0],
traj_emb.shape[1],
view_embedding.shape[2],
x_B_C_V_T_H_W.shape[3],
x_B_C_V_T_H_W.shape[4],
x_B_C_V_T_H_W.shape[5],
) # Shape: [B, V, 3, t, H, W]
x_B_C_V_T_H_W = torch.cat([x_B_C_V_T_H_W, view_embedding, traj_emb], dim=1)
else:
x_B_C_V_T_H_W = torch.cat([x_B_C_V_T_H_W, view_embedding], dim=1)
x_B_C_T_H_W = rearrange(x_B_C_V_T_H_W, " B C V T H W -> B C (V T) H W", V=self.n_views)
x_B_T_H_W_D = self.x_embedder(x_B_C_T_H_W)
if self.extra_per_block_abs_pos_emb:
extra_pos_emb = self.extra_pos_embedder(x_B_T_H_W_D, fps=fps)
else:
extra_pos_emb = None
if "rope" in self.pos_emb_cls.lower():
return x_B_T_H_W_D, self.pos_embedder(x_B_T_H_W_D, fps=fps), extra_pos_emb
if "fps_aware" in self.pos_emb_cls:
x_B_T_H_W_D = x_B_T_H_W_D + self.pos_embedder(x_B_T_H_W_D, fps=fps) # [B, T, H, W, D]
else:
x_B_T_H_W_D = x_B_T_H_W_D + self.pos_embedder(x_B_T_H_W_D) # [B, T, H, W, D]
return x_B_T_H_W_D, None, extra_pos_emb
class VideoExtendGeneralDIT(MultiviewGeneralDIT):
def __init__(self, *args, in_channels, **kwargs):
# extra channel for video condition mask
super().__init__(*args, in_channels=in_channels + 1, **kwargs)
log.info(f"VideoExtendGeneralDIT in_channels: {in_channels + 1}")
def forward(
self,
x: torch.Tensor,
timesteps: torch.Tensor,
crossattn_emb: torch.Tensor,
crossattn_mask: Optional[torch.Tensor] = None,
fps: Optional[torch.Tensor] = None,
image_size: Optional[torch.Tensor] = None,
padding_mask: Optional[torch.Tensor] = None,
scalar_feature: Optional[torch.Tensor] = None,
data_type: Optional[DataType] = DataType.VIDEO,
video_cond_bool: Optional[torch.Tensor] = None,
condition_video_indicator: Optional[torch.Tensor] = None,
condition_video_input_mask: Optional[torch.Tensor] = None,
condition_video_augment_sigma: Optional[torch.Tensor] = None,
condition_video_pose: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
"""Args:
condition_video_augment_sigma: (B) tensor of sigma value for the conditional input augmentation
condition_video_pose: (B, 1, T, H, W) tensor of pose condition
"""
B, C, T, H, W = x.shape
if data_type == DataType.VIDEO:
assert (
condition_video_input_mask is not None
), "condition_video_input_mask is required for video data type; check if your model_obj is extend_model.FSDPDiffusionModel or the base DiffusionModel"
if self.cp_group is not None:
condition_video_input_mask = rearrange(
condition_video_input_mask, "B C (V T) H W -> B C V T H W", V=self.n_views
)
condition_video_input_mask = split_inputs_cp(
condition_video_input_mask, seq_dim=3, cp_group=self.cp_group
)
condition_video_input_mask = rearrange(
condition_video_input_mask, "B C V T H W -> B C (V T) H W", V=self.n_views
)
input_list = [x, condition_video_input_mask]
if condition_video_pose is not None:
if condition_video_pose.shape[2] > T:
log.warning(
f"condition_video_pose has more frames than the input video: {condition_video_pose.shape} > {x.shape}"
)
condition_video_pose = condition_video_pose[:, :, :T, :, :].contiguous()
input_list.append(condition_video_pose)
x = torch.cat(
input_list,
dim=1,
)
return super().forward(
x=x,
timesteps=timesteps,
crossattn_emb=crossattn_emb,
crossattn_mask=crossattn_mask,
fps=fps,
image_size=image_size,
padding_mask=padding_mask,
scalar_feature=scalar_feature,
data_type=data_type,
condition_video_augment_sigma=condition_video_augment_sigma,
**kwargs,
)
|