File size: 11,364 Bytes
b6af722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations

import os
import threading
from typing import List, NamedTuple, Tuple

import torch

from cosmos_predict1.utils import distributed, log, misc
from cosmos_predict1.utils.checkpointer import Checkpointer as BaseCheckpointer
from cosmos_predict1.utils.model import Model

TORCH_VERSION: Tuple[int, ...] = tuple(int(x) for x in torch.__version__.split(".")[:2])
if TORCH_VERSION >= (1, 11):
    from torch.ao import quantization
    from torch.ao.quantization import FakeQuantizeBase, ObserverBase
elif (
    TORCH_VERSION >= (1, 8)
    and hasattr(torch.quantization, "FakeQuantizeBase")
    and hasattr(torch.quantization, "ObserverBase")
):
    from torch import quantization
    from torch.quantization import FakeQuantizeBase, ObserverBase


class _IncompatibleKeys(
    NamedTuple(
        "IncompatibleKeys",
        [
            ("missing_keys", List[str]),
            ("unexpected_keys", List[str]),
            ("incorrect_shapes", List[Tuple[str, Tuple[int], Tuple[int]]]),
        ],
    )
):
    pass


class MultiRankCheckpointer(BaseCheckpointer):
    def save(
        self,
        model: Model,
        optimizer: torch.optim.Optimizer,
        scheduler: torch.optim.lr_scheduler.LRScheduler,
        grad_scaler: torch.amp.GradScaler,
        iteration: int,
    ) -> None:
        """Save network weights, optimizer parameters, scheduler parameters to a checkpoint.

        Args:
            model (Model): The PyTorch model.
            optimizer (torch.optim.Optimizer): The model optimizer.
            scheduler (torch.optim.lr_scheduler.LRScheduler): The optimization scheduler.
            grad_scaler (torch.amp.GradScaler): The gradient scaler (for mixed precision training).
            iteration (int): Current iteration number.
        """
        # checkpoint_file = f"iter_{iteration:09}.pt"
        postfix, _, total_ema_num = model.get_ckpt_postfix()
        checkpoint_file = f"iter_{iteration:09}{postfix}.pt"
        save_ranks = list(range(total_ema_num))
        for _rank in save_ranks:
            if distributed.get_rank() == _rank:
                state_dict = dict(
                    model=model.state_dict(),
                    optimizer=optimizer.state_dict(),
                    scheduler=scheduler.state_dict(),
                    grad_scaler=grad_scaler.state_dict(),
                    iteration=iteration,
                )
                state_dict = misc.to(state_dict, device="cpu")
                self.callbacks.on_save_checkpoint(model, state_dict=state_dict)
                # Wait for previous saver thread to end.
                if self.save_thread:
                    self.save_thread.join()
                # Run the checkpoint saver in a separate thread.
                self.save_thread = threading.Thread(
                    target=self._save_worker_local,
                    daemon=False,
                    args=(state_dict, checkpoint_file, distributed.get_rank()),
                )
                self.save_thread.start()

    @misc.timer("checkpoint loading")
    def load(
        self,
        model: Model,
        optimizer: torch.optim.Optimizer | None = None,
        scheduler: torch.optim.lr_scheduler.LRScheduler | None = None,
        grad_scaler: torch.amp.GradScaler | None = None,
    ) -> int:
        """Load network weights and optimizer states from a checkpoint in a single process.

        The priority of the checkpoint loading logic is:
        1. Attempt to resume training if possible by looking for latest_checkpoint.txt under the same name.
        2. If no latest checkpoint were found, it loads the model weights specified by config_checkpoint.path.
           - This is typically used for inference mode.
           - If config_checkpoint.load_optimizer_state is True, then also load the optimizer and scheduler states.
        3. If none of the above, randomly initialize the model parameters and train from scratch.

        Args:
            model (Model): The PyTorch model.
            optimizer (torch.optim.Optimizer | None): The model optimizer (default: None).
            scheduler (torch.optim.lr_scheduler.LRScheduler | None): The optimization scheduler (default: None).
            grad_scaler (torch.amp.GradScaler | None): The gradient scaler (for mixed precision training).

        Returns:
            iteration (int): the iteration number to start/resume from.
        """
        latest_checkpoint_file = self._read_latest_checkpoint_file()
        if latest_checkpoint_file is not None:
            # different from base checkpointer, this support multi-EMA
            postfix, _, total_ema_num = model.get_ckpt_postfix()
            latest_checkpoint_file = latest_checkpoint_file.replace(".pt", f"{postfix}.pt")
            # 1. Resume training from latest_checkpoint.txt under the same name.
            checkpoint_dir = self.checkpoint_dir_local
            checkpoint_path = os.path.join(checkpoint_dir, latest_checkpoint_file)
            resume = True
        else:
            if self.load_path:
                # 2. Load the module weights specified by config_checkpoint.path.
                checkpoint_path = self.load_path
                # different from base checkpointer, this support multi-EMA
                postfix, _, total_ema_num = model.get_ckpt_postfix()
                checkpoint_path = checkpoint_path.replace(".pt", f"{postfix}.pt")
                resume = self.load_training_state
            else:
                # 3. Randomly initialize the model parameters and train from scratch.
                checkpoint_path = None
                resume = False
        # Load checkpoint.
        if checkpoint_path is not None:
            self._check_checkpoint_exists(checkpoint_path)
            log.info(f"Loading checkpoint (local): {checkpoint_path}")
            state_dict = torch.load(checkpoint_path, map_location=lambda storage, loc: storage)
            log.success(f"Complete loading checkpoint (local): {checkpoint_path}")
            self.callbacks.on_load_checkpoint(model, state_dict=state_dict)
            # Load the state dicts.
            log.info("- Loading the model...")
            log.critical(model.load_state_dict(state_dict["model"], strict=self.strict_resume))
            if resume:
                iteration = state_dict["iteration"]
                assert optimizer and scheduler
                log.info("- Loading the optimizer...")
                optimizer.load_state_dict(state_dict["optimizer"])
                log.info("- Loading the scheduler...")
                scheduler.load_state_dict(state_dict["scheduler"])
                scheduler.last_epoch = iteration
                log.info("- Loading the gradient scaler...")
                grad_scaler.load_state_dict(state_dict["grad_scaler"])
                log.success(f"Done with loading the checkpoint (iteration {iteration}).")
            else:
                iteration = 0
                log.success("Done with loading the checkpoint.")
        else:
            # Checkpoint not found and not specified. We will train everything from scratch.
            iteration = 0
            log.info("Training from scratch.")
        torch.cuda.empty_cache()
        return iteration


# https://github.com/facebookresearch/fvcore/blob/9d683aae73fb899dd35d6cf6720e5ef567761c57/fvcore/common/checkpoint.py
def non_strict_load_model(model: torch.nn.Module, checkpoint_state_dict: dict) -> _IncompatibleKeys:
    # workaround https://github.com/pytorch/pytorch/issues/24139
    model_state_dict = model.state_dict()
    incorrect_shapes = []
    for k in list(checkpoint_state_dict.keys()):
        if k in model_state_dict:
            if "_extra_state" in k:  # Key introduced by TransformerEngine for FP8
                log.warning(f"Skipping key {k} introduced by TransformerEngine for FP8 in the checkpoint.")
                continue
            model_param = model_state_dict[k]
            # Allow mismatch for uninitialized parameters
            if TORCH_VERSION >= (1, 8) and isinstance(model_param, torch.nn.parameter.UninitializedParameter):
                continue
            if not isinstance(model_param, torch.Tensor):
                raise ValueError(
                    f"Find non-tensor parameter {k} in the model. type: {type(model_param)} {type(checkpoint_state_dict[k])}, please check if this key is safe to skip or not."
                )

            shape_model = tuple(model_param.shape)
            shape_checkpoint = tuple(checkpoint_state_dict[k].shape)
            if shape_model != shape_checkpoint:
                has_observer_base_classes = (
                    TORCH_VERSION >= (1, 8)
                    and hasattr(quantization, "ObserverBase")
                    and hasattr(quantization, "FakeQuantizeBase")
                )
                if has_observer_base_classes:
                    # Handle the special case of quantization per channel observers,
                    # where buffer shape mismatches are expected.
                    def _get_module_for_key(model: torch.nn.Module, key: str) -> torch.nn.Module:
                        # foo.bar.param_or_buffer_name -> [foo, bar]
                        key_parts = key.split(".")[:-1]
                        cur_module = model
                        for key_part in key_parts:
                            cur_module = getattr(cur_module, key_part)
                        return cur_module

                    cls_to_skip = (
                        ObserverBase,
                        FakeQuantizeBase,
                    )
                    target_module = _get_module_for_key(model, k)
                    if isinstance(target_module, cls_to_skip):
                        # Do not remove modules with expected shape mismatches
                        # them from the state_dict loading. They have special logic
                        # in _load_from_state_dict to handle the mismatches.
                        continue

                incorrect_shapes.append((k, shape_checkpoint, shape_model))
                checkpoint_state_dict.pop(k)
    incompatible = model.load_state_dict(checkpoint_state_dict, strict=False)
    # Remove keys with "_extra_state" suffix, which are non-parameter items introduced by TransformerEngine for FP8 handling
    missing_keys = [k for k in incompatible.missing_keys if "_extra_state" not in k]
    unexpected_keys = [k for k in incompatible.unexpected_keys if "_extra_state" not in k]
    return _IncompatibleKeys(
        missing_keys=missing_keys,
        unexpected_keys=unexpected_keys,
        incorrect_shapes=incorrect_shapes,
    )