File size: 25,096 Bytes
b6af722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from contextlib import contextmanager
from typing import Tuple, Union

import einops
import numpy as np
import torch
import torchvision
import torchvision.transforms.functional as transforms_F
from matplotlib import pyplot as plt

from cosmos_predict1.diffusion.training.models.extend_model import ExtendDiffusionModel
from cosmos_predict1.utils import log
from cosmos_predict1.utils.easy_io import easy_io

"""This file contain functions needed for long video generation,
* function `generate_video_from_batch_with_loop` is used by `single_gpu_sep20`

"""


@contextmanager
def switch_config_for_inference(model):
    """For extend model inference, we need to make sure the condition_location is set to "first_n" and apply_corruption_to_condition_region is False.
    This context manager changes the model configuration to the correct settings for inference, and then restores the original settings when exiting the context.
    Args:
        model (ExtendDiffusionModel): video generation model
    """
    # Store the current condition_location
    current_condition_location = model.config.conditioner.video_cond_bool.condition_location
    if current_condition_location != "first_n" and current_condition_location != "first_and_last_1":
        current_condition_location = "first_n"
    current_apply_corruption_to_condition_region = (
        model.config.conditioner.video_cond_bool.apply_corruption_to_condition_region
    )
    try:
        log.info(
            "Change the condition_location to 'first_n' for inference, and apply_corruption_to_condition_region to False"
        )
        # Change the condition_location to "first_n" for inference
        model.config.conditioner.video_cond_bool.condition_location = current_condition_location
        if current_apply_corruption_to_condition_region == "gaussian_blur":
            model.config.conditioner.video_cond_bool.apply_corruption_to_condition_region = "clean"
        elif current_apply_corruption_to_condition_region == "noise_with_sigma":
            model.config.conditioner.video_cond_bool.apply_corruption_to_condition_region = "noise_with_sigma_fixed"
        # Yield control back to the calling context
        yield
    finally:
        # Restore the original condition_location after exiting the context
        log.info(
            f"Restore the original condition_location {current_condition_location}, apply_corruption_to_condition_region {current_apply_corruption_to_condition_region}"
        )
        model.config.conditioner.video_cond_bool.condition_location = current_condition_location
        model.config.conditioner.video_cond_bool.apply_corruption_to_condition_region = (
            current_apply_corruption_to_condition_region
        )


def visualize_latent_tensor_bcthw(tensor, nrow=1, show_norm=False, save_fig_path=None):
    """Debug function to display a latent tensor as a grid of images.
    Args:
        tensor (torch.Tensor): tensor in shape BCTHW
        nrow (int): number of images per row
        show_norm (bool): whether to display the norm of the tensor
        save_fig_path (str): path to save the visualization

    """
    log.info(
        f"display latent tensor shape {tensor.shape}, max={tensor.max()}, min={tensor.min()}, mean={tensor.mean()}, std={tensor.std()}"
    )
    tensor = tensor.float().cpu().detach()
    tensor = einops.rearrange(tensor, "b c (t n) h w -> (b t h) (n w) c", n=nrow)  # .numpy()
    # display the grid
    tensor_mean = tensor.mean(-1)
    tensor_norm = tensor.norm(dim=-1)
    log.info(f"tensor_norm, tensor_mean {tensor_norm.shape}, {tensor_mean.shape}")
    plt.figure(figsize=(20, 20))
    plt.imshow(tensor_mean)
    plt.title(f"mean {tensor_mean.mean()}, std {tensor_mean.std()}")
    if save_fig_path:
        os.makedirs(os.path.dirname(save_fig_path), exist_ok=True)
        log.info(f"save to {os.path.abspath(save_fig_path)}")
        plt.savefig(save_fig_path, bbox_inches="tight", pad_inches=0)
    plt.show()
    if show_norm:
        plt.figure(figsize=(20, 20))
        plt.imshow(tensor_norm)
        plt.show()


def visualize_tensor_bcthw(tensor: torch.Tensor, nrow=4, save_fig_path=None):
    """Debug function to display a tensor as a grid of images.
    Args:
        tensor (torch.Tensor): tensor in shape BCTHW
        nrow (int): number of images per row
        save_fig_path (str): path to save the visualization
    """
    log.info(f"display {tensor.shape}, {tensor.max()}, {tensor.min()}")
    assert tensor.max() < 200, f"tensor max {tensor.max()} > 200, the data range is likely wrong"
    tensor = tensor.float().cpu().detach()
    tensor = einops.rearrange(tensor, "b c t h w -> (b t) c h w")
    # use torchvision to save the tensor as a grid of images
    grid = torchvision.utils.make_grid(tensor, nrow=nrow)
    if save_fig_path is not None:
        os.makedirs(os.path.dirname(save_fig_path), exist_ok=True)
        log.info(f"save to {os.path.abspath(save_fig_path)}")
        torchvision.utils.save_image(tensor, save_fig_path)
    # display the grid
    plt.figure(figsize=(20, 20))
    plt.imshow(grid.permute(1, 2, 0))
    plt.show()


def compute_num_frames_condition(model: "ExtendDiffusionModel", num_of_latent_overlap: int, downsample_factor=8) -> int:
    """This function computes the number of condition pixel frames given the number of latent frames to overlap.
    Args:
        model (ExtendDiffusionModel): Video generation model
        num_of_latent_overlap (int): Number of latent frames to overlap
        downsample_factor (int): Downsample factor for temporal reduce
    Returns:
        int: Number of condition frames in output space
    """
    # Access the VAE: use tokenizer.video_vae if it exists, otherwise use tokenizer directly
    vae = model.tokenizer.video_vae if hasattr(model.tokenizer, "video_vae") else model.tokenizer

    # Check if the VAE is causal (default to True if attribute not found)
    if getattr(vae, "is_casual", True):
        # For causal model
        num_frames_condition = num_of_latent_overlap // vae.latent_chunk_duration * vae.pixel_chunk_duration
        if num_of_latent_overlap % vae.latent_chunk_duration == 1:
            num_frames_condition += 1
        elif num_of_latent_overlap % vae.latent_chunk_duration > 1:
            num_frames_condition += 1 + (num_of_latent_overlap % vae.latent_chunk_duration - 1) * downsample_factor
    else:
        num_frames_condition = num_of_latent_overlap * downsample_factor

    return num_frames_condition


def read_video_or_image_into_frames_BCTHW(
    input_path: str,
    input_path_format: str = None,
    H: int = None,
    W: int = None,
    normalize: bool = True,
    max_frames: int = -1,
    also_return_fps: bool = False,
) -> torch.Tensor:
    """Read video or image from file and convert it to tensor. The frames will be normalized to [-1, 1].
    Args:
        input_path (str): path to the input video or image, end with .mp4 or .png or .jpg
        H (int): height to resize the video
        W (int): width to resize the video
    Returns:
        torch.Tensor: video tensor in shape (1, C, T, H, W), range [-1, 1]
    """
    log.info(f"Reading video from {input_path}")

    loaded_data = easy_io.load(input_path, file_format=input_path_format, backend_args=None)
    if input_path.endswith(".png") or input_path.endswith(".jpg") or input_path.endswith(".jpeg"):
        frames = np.array(loaded_data)  # HWC, [0,255]
        if frames.shape[-1] > 3:  # RGBA, set the transparent to white
            # Separate the RGB and Alpha channels
            rgb_channels = frames[..., :3]
            alpha_channel = frames[..., 3] / 255.0  # Normalize alpha channel to [0, 1]

            # Create a white background
            white_bg = np.ones_like(rgb_channels) * 255  # White background in RGB

            # Blend the RGB channels with the white background based on the alpha channel
            frames = (rgb_channels * alpha_channel[..., None] + white_bg * (1 - alpha_channel[..., None])).astype(
                np.uint8
            )
        frames = [frames]
        fps = 0
    else:
        frames, meta_data = loaded_data
        fps = int(meta_data.get("fps"))
    if max_frames != -1:
        frames = frames[:max_frames]
    input_tensor = np.stack(frames, axis=0)
    input_tensor = einops.rearrange(input_tensor, "t h w c -> t c h w")
    if normalize:
        input_tensor = input_tensor / 128.0 - 1.0
        input_tensor = torch.from_numpy(input_tensor).bfloat16()  # TCHW
        log.info(f"Raw data shape: {input_tensor.shape}")
        if H is not None and W is not None:
            input_tensor = transforms_F.resize(
                input_tensor,
                size=(H, W),  # type: ignore
                interpolation=transforms_F.InterpolationMode.BICUBIC,
                antialias=True,
            )
    input_tensor = einops.rearrange(input_tensor, "(b t) c h w -> b c t h w", b=1)
    if normalize:
        input_tensor = input_tensor.to("cuda")
    log.info(f"Load shape {input_tensor.shape} value {input_tensor.min()}, {input_tensor.max()}")
    if also_return_fps:
        return input_tensor, fps
    return input_tensor


def create_condition_latent_from_input_frames(
    model: ExtendDiffusionModel,
    input_frames: torch.Tensor,
    num_frames_condition: int = 25,
):
    """Create condition latent for video generation. It will take the last num_frames_condition frames from the input frames as condition latent.
    Args:
        model (ExtendDiffusionModel): Video generation model
        input_frames (torch.Tensor): Video tensor in shape (1,C,T,H,W), range [-1, 1]
        num_frames_condition (int): Number of condition frames
    Returns:
        torch.Tensor: Condition latent in shape B,C,T,H,W
    """
    B, C, T, H, W = input_frames.shape
    # Dynamically access the VAE: use tokenizer.video_vae if it exists, otherwise use tokenizer directly
    vae = model.tokenizer.video_vae if hasattr(model.tokenizer, "video_vae") else model.tokenizer
    num_frames_encode = vae.pixel_chunk_duration  # Access pixel_chunk_duration from the VAE
    log.info(
        f"num_frames_encode not set, set it based on pixel chunk duration and model state shape: {num_frames_encode}"
    )

    log.info(
        f"Create condition latent from input frames {input_frames.shape}, value {input_frames.min()}, {input_frames.max()}, dtype {input_frames.dtype}"
    )

    assert (
        input_frames.shape[2] >= num_frames_condition
    ), f"input_frames not enough for condition, require at least {num_frames_condition}, got {input_frames.shape[2]}, {input_frames.shape}"
    assert (
        num_frames_encode >= num_frames_condition
    ), f"num_frames_encode should be larger than num_frames_condition, got {num_frames_encode}, {num_frames_condition}"

    # Put the conditional frames at the beginning of the video, and pad the end with zeros
    if model.config.conditioner.video_cond_bool.condition_location == "first_and_last_1":
        condition_frames_first = input_frames[:, :, :num_frames_condition]
        condition_frames_last = input_frames[:, :, -num_frames_condition:]
        padding_frames = condition_frames_first.new_zeros(B, C, num_frames_encode + 1 - 2 * num_frames_condition, H, W)
        encode_input_frames = torch.cat([condition_frames_first, padding_frames, condition_frames_last], dim=2)
    else:
        condition_frames = input_frames[:, :, -num_frames_condition:]
        padding_frames = condition_frames.new_zeros(B, C, num_frames_encode - num_frames_condition, H, W)
        encode_input_frames = torch.cat([condition_frames, padding_frames], dim=2)

    log.info(
        f"create latent with input shape {encode_input_frames.shape} including padding {num_frames_encode - num_frames_condition} at the end"
    )
    if hasattr(model, "n_views"):
        encode_input_frames = einops.rearrange(encode_input_frames, "(B V) C T H W -> B C (V T) H W", V=model.n_views)
    if model.config.conditioner.video_cond_bool.condition_location == "first_and_last_1":
        latent1 = model.encode(encode_input_frames[:, :, :num_frames_encode])  # BCTHW
        latent2 = model.encode(encode_input_frames[:, :, num_frames_encode:])
        latent = torch.cat([latent1, latent2], dim=2)  # BCTHW
    else:
        latent = model.encode(encode_input_frames)
    return latent, encode_input_frames


def get_condition_latent(
    model: ExtendDiffusionModel,
    conditioned_image_or_video_path: str,
    num_of_latent_condition: int = 4,
    state_shape: list[int] = None,
    input_path_format: str = None,
    frame_index: int = 0,
    frame_stride: int = 1,
):
    if state_shape is None:
        state_shape = model.state_shape
    if num_of_latent_condition == 0:
        log.info("No condition latent needed, return empty latent")
        condition_latent = (
            torch.zeros(
                [
                    1,
                ]
                + state_shape
            )
            .to(torch.bfloat16)
            .cuda()
        )
        return condition_latent, None

    H, W = (
        state_shape[-2] * model.vae.spatial_compression_factor,
        state_shape[-1] * model.vae.spatial_compression_factor,
    )
    input_frames = read_video_or_image_into_frames_BCTHW(
        conditioned_image_or_video_path,
        input_path_format=input_path_format,
        H=H,
        W=W,
    )
    if model.config.conditioner.video_cond_bool.condition_location == "first_and_last_1":
        start_frame = frame_index * frame_stride
        end_frame = (frame_index + 1) * frame_stride
        input_frames = torch.cat(
            [input_frames[:, :, start_frame : start_frame + 1], input_frames[:, :, end_frame : end_frame + 1]], dim=2
        ).contiguous()  # BCTHW

    num_frames_condition = compute_num_frames_condition(
        model, num_of_latent_condition, downsample_factor=model.vae.temporal_compression_factor
    )

    condition_latent, _ = create_condition_latent_from_input_frames(model, input_frames, num_frames_condition)
    condition_latent = condition_latent.to(torch.bfloat16)
    return condition_latent, input_frames


def generate_video_from_batch_with_loop(
    model: ExtendDiffusionModel,
    state_shape: list[int],
    is_negative_prompt: bool,
    data_batch: dict,
    condition_latent: torch.Tensor,
    # hyper-parameters for inference
    num_of_loops: int,
    num_of_latent_overlap_list: list[int],
    guidance: float,
    num_steps: int,
    seed: int,
    add_input_frames_guidance: bool = False,
    augment_sigma_list: list[float] = None,
    data_batch_list: Union[None, list[dict]] = None,
    visualize: bool = False,
    save_fig_path: str = None,
    skip_reencode: int = 0,
    return_noise: bool = False,
) -> Tuple[np.array, list, list, torch.Tensor] | Tuple[np.array, list, list, torch.Tensor, torch.Tensor]:
    """Generate video with loop, given data batch. The condition latent will be updated at each loop.
    Args:
        model (ExtendDiffusionModel)
        state_shape (list): shape of the state tensor
        is_negative_prompt (bool): whether to use negative prompt

        data_batch (dict): data batch for video generation
        condition_latent (torch.Tensor): condition latent in shape BCTHW

        num_of_loops (int): number of loops to generate video
        num_of_latent_overlap_list (list[int]): list number of latent frames to overlap between clips, different clips can have different overlap
        guidance (float): The guidance scale to use during sample generation; defaults to 5.0.
        num_steps (int): number of steps for diffusion sampling
        seed (int): random seed for sampling
        add_input_frames_guidance (bool): whether to add image guidance, default is False
        augment_sigma_list (list): list of sigma value for the condition corruption at different clip, used when apply_corruption_to_condition_region is "noise_with_sigma" or "noise_with_sigma_fixed". default is None

        data_batch_list (list): list of data batch for video generation, used when num_of_loops >= 1, to support multiple prompts in auto-regressive generation. default is None
        visualize (bool): whether to visualize the latent and grid, default is False
        save_fig_path (str): path to save the visualization, default is None

        skip_reencode (int): whether to skip re-encode the input frames, default is 0
        return_noise (bool): whether to return the initial noise used for sampling, used for ODE pairs generation. Default is False
    Returns:
        np.array: generated video in shape THWC, range [0, 255]
        list: list of condition latent, each in shape BCTHW
        list: list of sample latent, each in shape BCTHW
        torch.Tensor: initial noise used for sampling, shape BCTHW (if return_noise is True)
    """

    if data_batch_list is None:
        data_batch_list = [data_batch for _ in range(num_of_loops)]
    if visualize:
        assert save_fig_path is not None, "save_fig_path should be set when visualize is True"

    # Generate video with loop
    condition_latent_list = []
    decode_latent_list = []  # list collect the latent token to be decoded at the end
    sample_latent = []
    grid_list = []

    augment_sigma_list = (
        model.config.conditioner.video_cond_bool.apply_corruption_to_condition_region_sigma_value
        if augment_sigma_list is None
        else augment_sigma_list
    )

    for i in range(num_of_loops):
        num_of_latent_overlap_i = num_of_latent_overlap_list[i]
        num_of_latent_overlap_i_plus_1 = (
            num_of_latent_overlap_list[i + 1]
            if i + 1 < len(num_of_latent_overlap_list)
            else num_of_latent_overlap_list[-1]
        )
        if condition_latent.shape[2] < state_shape[1]:
            # Padding condition latent to state shape
            log.info(f"Padding condition latent {condition_latent.shape} to state shape {state_shape}")
            b, c, t, h, w = condition_latent.shape
            condition_latent = torch.cat(
                [
                    condition_latent,
                    condition_latent.new_zeros(b, c, state_shape[1] - t, h, w),
                ],
                dim=2,
            ).contiguous()
            log.info(f"after padding, condition latent shape {condition_latent.shape}")
        log.info(f"Generate video loop {i} / {num_of_loops}")
        if visualize:
            log.info(f"Visualize condition latent {i}")
            visualize_latent_tensor_bcthw(
                condition_latent[:, :, :4].float(),
                nrow=4,
                save_fig_path=os.path.join(save_fig_path, f"loop_{i:02d}_condition_latent_first_4.png"),
            )  # BCTHW

        condition_latent_list.append(condition_latent)

        if i < len(augment_sigma_list):
            condition_video_augment_sigma_in_inference = augment_sigma_list[i]
            log.info(f"condition_video_augment_sigma_in_inference {condition_video_augment_sigma_in_inference}")
        else:
            condition_video_augment_sigma_in_inference = augment_sigma_list[-1]
        assert not add_input_frames_guidance, "add_input_frames_guidance should be False, not supported"

        sample = model.generate_samples_from_batch(
            data_batch_list[i],
            guidance=guidance,
            state_shape=state_shape,
            num_steps=num_steps,
            is_negative_prompt=is_negative_prompt,
            seed=seed + i,
            condition_latent=condition_latent,
            num_condition_t=num_of_latent_overlap_i,
            condition_video_augment_sigma_in_inference=condition_video_augment_sigma_in_inference,
            return_noise=return_noise,
        )

        if return_noise:
            sample, noise = sample

        if visualize:
            log.info(f"Visualize sampled latent {i} 4-8 frames")
            visualize_latent_tensor_bcthw(
                sample[:, :, 4:8].float(),
                nrow=4,
                save_fig_path=os.path.join(save_fig_path, f"loop_{i:02d}_sample_latent_last_4.png"),
            )  # BCTHW

            diff_between_sample_and_condition = (sample - condition_latent)[:, :, :num_of_latent_overlap_i]
            log.info(
                f"Visualize diff between sample and condition latent {i} first 4 frames {diff_between_sample_and_condition.mean()}"
            )

        sample_latent.append(sample)
        T = condition_latent.shape[2]
        assert num_of_latent_overlap_i <= T, f"num_of_latent_overlap should be < T, get {num_of_latent_overlap_i}, {T}"

        if model.config.conditioner.video_cond_bool.sample_tokens_start_from_p_or_i:
            assert skip_reencode, "skip_reencode should be turned on when sample_tokens_start_from_p_or_i is True"
            if i == 0:
                decode_latent_list.append(sample)
            else:
                decode_latent_list.append(sample[:, :, num_of_latent_overlap_i:])
        else:
            # Interpolator mode. Decode the first and last as an image.
            if model.config.conditioner.video_cond_bool.condition_location == "first_and_last_1":
                grid_BCTHW_1 = (1.0 + model.decode(sample[:, :, :-1, ...])).clamp(0, 2) / 2  # [B, 3, T-1, H, W], [0, 1]
                grid_BCTHW_2 = (1.0 + model.decode(sample[:, :, -1:, ...])).clamp(0, 2) / 2  # [B, 3, 1, H, W], [0, 1]
                grid_BCTHW = torch.cat([grid_BCTHW_1, grid_BCTHW_2], dim=2)  # [B, 3, T, H, W], [0, 1]
            else:
                grid_BCTHW = (1.0 + model.decode(sample)).clamp(0, 2) / 2  # [B, 3, T, H, W], [0, 1]

            if visualize:
                log.info(f"Visualize grid {i}")
                visualize_tensor_bcthw(
                    grid_BCTHW.float(), nrow=5, save_fig_path=os.path.join(save_fig_path, f"loop_{i:02d}_grid.png")
                )
            grid_np_THWC = (
                (grid_BCTHW[0].permute(1, 2, 3, 0) * 255).to(torch.uint8).cpu().numpy().astype(np.uint8)
            )  # THW3, range [0, 255]

            # Post-process the output: cut the conditional frames from the output if it's not the first loop
            num_cond_frames = compute_num_frames_condition(
                model, num_of_latent_overlap_i_plus_1, downsample_factor=model.tokenizer.temporal_compression_factor
            )
            if i == 0:
                new_grid_np_THWC = grid_np_THWC  # First output, dont cut the conditional frames
            else:
                new_grid_np_THWC = grid_np_THWC[
                    num_cond_frames:
                ]  # Remove the conditional frames from the output, since it's overlapped with previous loop
            grid_list.append(new_grid_np_THWC)

            # Prepare the next loop: re-compute the condition latent
            if hasattr(model, "n_views"):
                grid_BCTHW = einops.rearrange(grid_BCTHW, "B C (V T) H W -> (B V) C T H W", V=model.n_views)
            condition_frame_input = grid_BCTHW[:, :, -num_cond_frames:] * 2 - 1  # BCTHW, range [0, 1] to [-1, 1]
        if skip_reencode:
            # Use the last num_of_latent_overlap latent token as condition latent
            log.info(f"Skip re-encode the condition frames, use the last {num_of_latent_overlap_i_plus_1} latent token")
            condition_latent = sample[:, :, -num_of_latent_overlap_i_plus_1:]
        else:
            # Re-encode the condition frames to get the new condition latent
            condition_latent, _ = create_condition_latent_from_input_frames(
                model, condition_frame_input, num_frames_condition=num_cond_frames
            )  # BCTHW
        condition_latent = condition_latent.to(torch.bfloat16)

    # save videos
    if model.config.conditioner.video_cond_bool.sample_tokens_start_from_p_or_i:
        # decode all video together
        decode_latent_list = torch.cat(decode_latent_list, dim=2)
        grid_BCTHW = (1.0 + model.decode(decode_latent_list)).clamp(0, 2) / 2  # [B, 3, T, H, W], [0, 1]
        video_THWC = (
            (grid_BCTHW[0].permute(1, 2, 3, 0) * 255).to(torch.uint8).cpu().numpy().astype(np.uint8)
        )  # THW3, range [0, 255]
    else:
        video_THWC = np.concatenate(grid_list, axis=0)  # THW3, range [0, 255]

    if return_noise:
        return video_THWC, condition_latent_list, sample_latent, noise
    return video_THWC, condition_latent_list, sample_latent