Spaces:
Build error
Build error
File size: 25,096 Bytes
b6af722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from contextlib import contextmanager
from typing import Tuple, Union
import einops
import numpy as np
import torch
import torchvision
import torchvision.transforms.functional as transforms_F
from matplotlib import pyplot as plt
from cosmos_predict1.diffusion.training.models.extend_model import ExtendDiffusionModel
from cosmos_predict1.utils import log
from cosmos_predict1.utils.easy_io import easy_io
"""This file contain functions needed for long video generation,
* function `generate_video_from_batch_with_loop` is used by `single_gpu_sep20`
"""
@contextmanager
def switch_config_for_inference(model):
"""For extend model inference, we need to make sure the condition_location is set to "first_n" and apply_corruption_to_condition_region is False.
This context manager changes the model configuration to the correct settings for inference, and then restores the original settings when exiting the context.
Args:
model (ExtendDiffusionModel): video generation model
"""
# Store the current condition_location
current_condition_location = model.config.conditioner.video_cond_bool.condition_location
if current_condition_location != "first_n" and current_condition_location != "first_and_last_1":
current_condition_location = "first_n"
current_apply_corruption_to_condition_region = (
model.config.conditioner.video_cond_bool.apply_corruption_to_condition_region
)
try:
log.info(
"Change the condition_location to 'first_n' for inference, and apply_corruption_to_condition_region to False"
)
# Change the condition_location to "first_n" for inference
model.config.conditioner.video_cond_bool.condition_location = current_condition_location
if current_apply_corruption_to_condition_region == "gaussian_blur":
model.config.conditioner.video_cond_bool.apply_corruption_to_condition_region = "clean"
elif current_apply_corruption_to_condition_region == "noise_with_sigma":
model.config.conditioner.video_cond_bool.apply_corruption_to_condition_region = "noise_with_sigma_fixed"
# Yield control back to the calling context
yield
finally:
# Restore the original condition_location after exiting the context
log.info(
f"Restore the original condition_location {current_condition_location}, apply_corruption_to_condition_region {current_apply_corruption_to_condition_region}"
)
model.config.conditioner.video_cond_bool.condition_location = current_condition_location
model.config.conditioner.video_cond_bool.apply_corruption_to_condition_region = (
current_apply_corruption_to_condition_region
)
def visualize_latent_tensor_bcthw(tensor, nrow=1, show_norm=False, save_fig_path=None):
"""Debug function to display a latent tensor as a grid of images.
Args:
tensor (torch.Tensor): tensor in shape BCTHW
nrow (int): number of images per row
show_norm (bool): whether to display the norm of the tensor
save_fig_path (str): path to save the visualization
"""
log.info(
f"display latent tensor shape {tensor.shape}, max={tensor.max()}, min={tensor.min()}, mean={tensor.mean()}, std={tensor.std()}"
)
tensor = tensor.float().cpu().detach()
tensor = einops.rearrange(tensor, "b c (t n) h w -> (b t h) (n w) c", n=nrow) # .numpy()
# display the grid
tensor_mean = tensor.mean(-1)
tensor_norm = tensor.norm(dim=-1)
log.info(f"tensor_norm, tensor_mean {tensor_norm.shape}, {tensor_mean.shape}")
plt.figure(figsize=(20, 20))
plt.imshow(tensor_mean)
plt.title(f"mean {tensor_mean.mean()}, std {tensor_mean.std()}")
if save_fig_path:
os.makedirs(os.path.dirname(save_fig_path), exist_ok=True)
log.info(f"save to {os.path.abspath(save_fig_path)}")
plt.savefig(save_fig_path, bbox_inches="tight", pad_inches=0)
plt.show()
if show_norm:
plt.figure(figsize=(20, 20))
plt.imshow(tensor_norm)
plt.show()
def visualize_tensor_bcthw(tensor: torch.Tensor, nrow=4, save_fig_path=None):
"""Debug function to display a tensor as a grid of images.
Args:
tensor (torch.Tensor): tensor in shape BCTHW
nrow (int): number of images per row
save_fig_path (str): path to save the visualization
"""
log.info(f"display {tensor.shape}, {tensor.max()}, {tensor.min()}")
assert tensor.max() < 200, f"tensor max {tensor.max()} > 200, the data range is likely wrong"
tensor = tensor.float().cpu().detach()
tensor = einops.rearrange(tensor, "b c t h w -> (b t) c h w")
# use torchvision to save the tensor as a grid of images
grid = torchvision.utils.make_grid(tensor, nrow=nrow)
if save_fig_path is not None:
os.makedirs(os.path.dirname(save_fig_path), exist_ok=True)
log.info(f"save to {os.path.abspath(save_fig_path)}")
torchvision.utils.save_image(tensor, save_fig_path)
# display the grid
plt.figure(figsize=(20, 20))
plt.imshow(grid.permute(1, 2, 0))
plt.show()
def compute_num_frames_condition(model: "ExtendDiffusionModel", num_of_latent_overlap: int, downsample_factor=8) -> int:
"""This function computes the number of condition pixel frames given the number of latent frames to overlap.
Args:
model (ExtendDiffusionModel): Video generation model
num_of_latent_overlap (int): Number of latent frames to overlap
downsample_factor (int): Downsample factor for temporal reduce
Returns:
int: Number of condition frames in output space
"""
# Access the VAE: use tokenizer.video_vae if it exists, otherwise use tokenizer directly
vae = model.tokenizer.video_vae if hasattr(model.tokenizer, "video_vae") else model.tokenizer
# Check if the VAE is causal (default to True if attribute not found)
if getattr(vae, "is_casual", True):
# For causal model
num_frames_condition = num_of_latent_overlap // vae.latent_chunk_duration * vae.pixel_chunk_duration
if num_of_latent_overlap % vae.latent_chunk_duration == 1:
num_frames_condition += 1
elif num_of_latent_overlap % vae.latent_chunk_duration > 1:
num_frames_condition += 1 + (num_of_latent_overlap % vae.latent_chunk_duration - 1) * downsample_factor
else:
num_frames_condition = num_of_latent_overlap * downsample_factor
return num_frames_condition
def read_video_or_image_into_frames_BCTHW(
input_path: str,
input_path_format: str = None,
H: int = None,
W: int = None,
normalize: bool = True,
max_frames: int = -1,
also_return_fps: bool = False,
) -> torch.Tensor:
"""Read video or image from file and convert it to tensor. The frames will be normalized to [-1, 1].
Args:
input_path (str): path to the input video or image, end with .mp4 or .png or .jpg
H (int): height to resize the video
W (int): width to resize the video
Returns:
torch.Tensor: video tensor in shape (1, C, T, H, W), range [-1, 1]
"""
log.info(f"Reading video from {input_path}")
loaded_data = easy_io.load(input_path, file_format=input_path_format, backend_args=None)
if input_path.endswith(".png") or input_path.endswith(".jpg") or input_path.endswith(".jpeg"):
frames = np.array(loaded_data) # HWC, [0,255]
if frames.shape[-1] > 3: # RGBA, set the transparent to white
# Separate the RGB and Alpha channels
rgb_channels = frames[..., :3]
alpha_channel = frames[..., 3] / 255.0 # Normalize alpha channel to [0, 1]
# Create a white background
white_bg = np.ones_like(rgb_channels) * 255 # White background in RGB
# Blend the RGB channels with the white background based on the alpha channel
frames = (rgb_channels * alpha_channel[..., None] + white_bg * (1 - alpha_channel[..., None])).astype(
np.uint8
)
frames = [frames]
fps = 0
else:
frames, meta_data = loaded_data
fps = int(meta_data.get("fps"))
if max_frames != -1:
frames = frames[:max_frames]
input_tensor = np.stack(frames, axis=0)
input_tensor = einops.rearrange(input_tensor, "t h w c -> t c h w")
if normalize:
input_tensor = input_tensor / 128.0 - 1.0
input_tensor = torch.from_numpy(input_tensor).bfloat16() # TCHW
log.info(f"Raw data shape: {input_tensor.shape}")
if H is not None and W is not None:
input_tensor = transforms_F.resize(
input_tensor,
size=(H, W), # type: ignore
interpolation=transforms_F.InterpolationMode.BICUBIC,
antialias=True,
)
input_tensor = einops.rearrange(input_tensor, "(b t) c h w -> b c t h w", b=1)
if normalize:
input_tensor = input_tensor.to("cuda")
log.info(f"Load shape {input_tensor.shape} value {input_tensor.min()}, {input_tensor.max()}")
if also_return_fps:
return input_tensor, fps
return input_tensor
def create_condition_latent_from_input_frames(
model: ExtendDiffusionModel,
input_frames: torch.Tensor,
num_frames_condition: int = 25,
):
"""Create condition latent for video generation. It will take the last num_frames_condition frames from the input frames as condition latent.
Args:
model (ExtendDiffusionModel): Video generation model
input_frames (torch.Tensor): Video tensor in shape (1,C,T,H,W), range [-1, 1]
num_frames_condition (int): Number of condition frames
Returns:
torch.Tensor: Condition latent in shape B,C,T,H,W
"""
B, C, T, H, W = input_frames.shape
# Dynamically access the VAE: use tokenizer.video_vae if it exists, otherwise use tokenizer directly
vae = model.tokenizer.video_vae if hasattr(model.tokenizer, "video_vae") else model.tokenizer
num_frames_encode = vae.pixel_chunk_duration # Access pixel_chunk_duration from the VAE
log.info(
f"num_frames_encode not set, set it based on pixel chunk duration and model state shape: {num_frames_encode}"
)
log.info(
f"Create condition latent from input frames {input_frames.shape}, value {input_frames.min()}, {input_frames.max()}, dtype {input_frames.dtype}"
)
assert (
input_frames.shape[2] >= num_frames_condition
), f"input_frames not enough for condition, require at least {num_frames_condition}, got {input_frames.shape[2]}, {input_frames.shape}"
assert (
num_frames_encode >= num_frames_condition
), f"num_frames_encode should be larger than num_frames_condition, got {num_frames_encode}, {num_frames_condition}"
# Put the conditional frames at the beginning of the video, and pad the end with zeros
if model.config.conditioner.video_cond_bool.condition_location == "first_and_last_1":
condition_frames_first = input_frames[:, :, :num_frames_condition]
condition_frames_last = input_frames[:, :, -num_frames_condition:]
padding_frames = condition_frames_first.new_zeros(B, C, num_frames_encode + 1 - 2 * num_frames_condition, H, W)
encode_input_frames = torch.cat([condition_frames_first, padding_frames, condition_frames_last], dim=2)
else:
condition_frames = input_frames[:, :, -num_frames_condition:]
padding_frames = condition_frames.new_zeros(B, C, num_frames_encode - num_frames_condition, H, W)
encode_input_frames = torch.cat([condition_frames, padding_frames], dim=2)
log.info(
f"create latent with input shape {encode_input_frames.shape} including padding {num_frames_encode - num_frames_condition} at the end"
)
if hasattr(model, "n_views"):
encode_input_frames = einops.rearrange(encode_input_frames, "(B V) C T H W -> B C (V T) H W", V=model.n_views)
if model.config.conditioner.video_cond_bool.condition_location == "first_and_last_1":
latent1 = model.encode(encode_input_frames[:, :, :num_frames_encode]) # BCTHW
latent2 = model.encode(encode_input_frames[:, :, num_frames_encode:])
latent = torch.cat([latent1, latent2], dim=2) # BCTHW
else:
latent = model.encode(encode_input_frames)
return latent, encode_input_frames
def get_condition_latent(
model: ExtendDiffusionModel,
conditioned_image_or_video_path: str,
num_of_latent_condition: int = 4,
state_shape: list[int] = None,
input_path_format: str = None,
frame_index: int = 0,
frame_stride: int = 1,
):
if state_shape is None:
state_shape = model.state_shape
if num_of_latent_condition == 0:
log.info("No condition latent needed, return empty latent")
condition_latent = (
torch.zeros(
[
1,
]
+ state_shape
)
.to(torch.bfloat16)
.cuda()
)
return condition_latent, None
H, W = (
state_shape[-2] * model.vae.spatial_compression_factor,
state_shape[-1] * model.vae.spatial_compression_factor,
)
input_frames = read_video_or_image_into_frames_BCTHW(
conditioned_image_or_video_path,
input_path_format=input_path_format,
H=H,
W=W,
)
if model.config.conditioner.video_cond_bool.condition_location == "first_and_last_1":
start_frame = frame_index * frame_stride
end_frame = (frame_index + 1) * frame_stride
input_frames = torch.cat(
[input_frames[:, :, start_frame : start_frame + 1], input_frames[:, :, end_frame : end_frame + 1]], dim=2
).contiguous() # BCTHW
num_frames_condition = compute_num_frames_condition(
model, num_of_latent_condition, downsample_factor=model.vae.temporal_compression_factor
)
condition_latent, _ = create_condition_latent_from_input_frames(model, input_frames, num_frames_condition)
condition_latent = condition_latent.to(torch.bfloat16)
return condition_latent, input_frames
def generate_video_from_batch_with_loop(
model: ExtendDiffusionModel,
state_shape: list[int],
is_negative_prompt: bool,
data_batch: dict,
condition_latent: torch.Tensor,
# hyper-parameters for inference
num_of_loops: int,
num_of_latent_overlap_list: list[int],
guidance: float,
num_steps: int,
seed: int,
add_input_frames_guidance: bool = False,
augment_sigma_list: list[float] = None,
data_batch_list: Union[None, list[dict]] = None,
visualize: bool = False,
save_fig_path: str = None,
skip_reencode: int = 0,
return_noise: bool = False,
) -> Tuple[np.array, list, list, torch.Tensor] | Tuple[np.array, list, list, torch.Tensor, torch.Tensor]:
"""Generate video with loop, given data batch. The condition latent will be updated at each loop.
Args:
model (ExtendDiffusionModel)
state_shape (list): shape of the state tensor
is_negative_prompt (bool): whether to use negative prompt
data_batch (dict): data batch for video generation
condition_latent (torch.Tensor): condition latent in shape BCTHW
num_of_loops (int): number of loops to generate video
num_of_latent_overlap_list (list[int]): list number of latent frames to overlap between clips, different clips can have different overlap
guidance (float): The guidance scale to use during sample generation; defaults to 5.0.
num_steps (int): number of steps for diffusion sampling
seed (int): random seed for sampling
add_input_frames_guidance (bool): whether to add image guidance, default is False
augment_sigma_list (list): list of sigma value for the condition corruption at different clip, used when apply_corruption_to_condition_region is "noise_with_sigma" or "noise_with_sigma_fixed". default is None
data_batch_list (list): list of data batch for video generation, used when num_of_loops >= 1, to support multiple prompts in auto-regressive generation. default is None
visualize (bool): whether to visualize the latent and grid, default is False
save_fig_path (str): path to save the visualization, default is None
skip_reencode (int): whether to skip re-encode the input frames, default is 0
return_noise (bool): whether to return the initial noise used for sampling, used for ODE pairs generation. Default is False
Returns:
np.array: generated video in shape THWC, range [0, 255]
list: list of condition latent, each in shape BCTHW
list: list of sample latent, each in shape BCTHW
torch.Tensor: initial noise used for sampling, shape BCTHW (if return_noise is True)
"""
if data_batch_list is None:
data_batch_list = [data_batch for _ in range(num_of_loops)]
if visualize:
assert save_fig_path is not None, "save_fig_path should be set when visualize is True"
# Generate video with loop
condition_latent_list = []
decode_latent_list = [] # list collect the latent token to be decoded at the end
sample_latent = []
grid_list = []
augment_sigma_list = (
model.config.conditioner.video_cond_bool.apply_corruption_to_condition_region_sigma_value
if augment_sigma_list is None
else augment_sigma_list
)
for i in range(num_of_loops):
num_of_latent_overlap_i = num_of_latent_overlap_list[i]
num_of_latent_overlap_i_plus_1 = (
num_of_latent_overlap_list[i + 1]
if i + 1 < len(num_of_latent_overlap_list)
else num_of_latent_overlap_list[-1]
)
if condition_latent.shape[2] < state_shape[1]:
# Padding condition latent to state shape
log.info(f"Padding condition latent {condition_latent.shape} to state shape {state_shape}")
b, c, t, h, w = condition_latent.shape
condition_latent = torch.cat(
[
condition_latent,
condition_latent.new_zeros(b, c, state_shape[1] - t, h, w),
],
dim=2,
).contiguous()
log.info(f"after padding, condition latent shape {condition_latent.shape}")
log.info(f"Generate video loop {i} / {num_of_loops}")
if visualize:
log.info(f"Visualize condition latent {i}")
visualize_latent_tensor_bcthw(
condition_latent[:, :, :4].float(),
nrow=4,
save_fig_path=os.path.join(save_fig_path, f"loop_{i:02d}_condition_latent_first_4.png"),
) # BCTHW
condition_latent_list.append(condition_latent)
if i < len(augment_sigma_list):
condition_video_augment_sigma_in_inference = augment_sigma_list[i]
log.info(f"condition_video_augment_sigma_in_inference {condition_video_augment_sigma_in_inference}")
else:
condition_video_augment_sigma_in_inference = augment_sigma_list[-1]
assert not add_input_frames_guidance, "add_input_frames_guidance should be False, not supported"
sample = model.generate_samples_from_batch(
data_batch_list[i],
guidance=guidance,
state_shape=state_shape,
num_steps=num_steps,
is_negative_prompt=is_negative_prompt,
seed=seed + i,
condition_latent=condition_latent,
num_condition_t=num_of_latent_overlap_i,
condition_video_augment_sigma_in_inference=condition_video_augment_sigma_in_inference,
return_noise=return_noise,
)
if return_noise:
sample, noise = sample
if visualize:
log.info(f"Visualize sampled latent {i} 4-8 frames")
visualize_latent_tensor_bcthw(
sample[:, :, 4:8].float(),
nrow=4,
save_fig_path=os.path.join(save_fig_path, f"loop_{i:02d}_sample_latent_last_4.png"),
) # BCTHW
diff_between_sample_and_condition = (sample - condition_latent)[:, :, :num_of_latent_overlap_i]
log.info(
f"Visualize diff between sample and condition latent {i} first 4 frames {diff_between_sample_and_condition.mean()}"
)
sample_latent.append(sample)
T = condition_latent.shape[2]
assert num_of_latent_overlap_i <= T, f"num_of_latent_overlap should be < T, get {num_of_latent_overlap_i}, {T}"
if model.config.conditioner.video_cond_bool.sample_tokens_start_from_p_or_i:
assert skip_reencode, "skip_reencode should be turned on when sample_tokens_start_from_p_or_i is True"
if i == 0:
decode_latent_list.append(sample)
else:
decode_latent_list.append(sample[:, :, num_of_latent_overlap_i:])
else:
# Interpolator mode. Decode the first and last as an image.
if model.config.conditioner.video_cond_bool.condition_location == "first_and_last_1":
grid_BCTHW_1 = (1.0 + model.decode(sample[:, :, :-1, ...])).clamp(0, 2) / 2 # [B, 3, T-1, H, W], [0, 1]
grid_BCTHW_2 = (1.0 + model.decode(sample[:, :, -1:, ...])).clamp(0, 2) / 2 # [B, 3, 1, H, W], [0, 1]
grid_BCTHW = torch.cat([grid_BCTHW_1, grid_BCTHW_2], dim=2) # [B, 3, T, H, W], [0, 1]
else:
grid_BCTHW = (1.0 + model.decode(sample)).clamp(0, 2) / 2 # [B, 3, T, H, W], [0, 1]
if visualize:
log.info(f"Visualize grid {i}")
visualize_tensor_bcthw(
grid_BCTHW.float(), nrow=5, save_fig_path=os.path.join(save_fig_path, f"loop_{i:02d}_grid.png")
)
grid_np_THWC = (
(grid_BCTHW[0].permute(1, 2, 3, 0) * 255).to(torch.uint8).cpu().numpy().astype(np.uint8)
) # THW3, range [0, 255]
# Post-process the output: cut the conditional frames from the output if it's not the first loop
num_cond_frames = compute_num_frames_condition(
model, num_of_latent_overlap_i_plus_1, downsample_factor=model.tokenizer.temporal_compression_factor
)
if i == 0:
new_grid_np_THWC = grid_np_THWC # First output, dont cut the conditional frames
else:
new_grid_np_THWC = grid_np_THWC[
num_cond_frames:
] # Remove the conditional frames from the output, since it's overlapped with previous loop
grid_list.append(new_grid_np_THWC)
# Prepare the next loop: re-compute the condition latent
if hasattr(model, "n_views"):
grid_BCTHW = einops.rearrange(grid_BCTHW, "B C (V T) H W -> (B V) C T H W", V=model.n_views)
condition_frame_input = grid_BCTHW[:, :, -num_cond_frames:] * 2 - 1 # BCTHW, range [0, 1] to [-1, 1]
if skip_reencode:
# Use the last num_of_latent_overlap latent token as condition latent
log.info(f"Skip re-encode the condition frames, use the last {num_of_latent_overlap_i_plus_1} latent token")
condition_latent = sample[:, :, -num_of_latent_overlap_i_plus_1:]
else:
# Re-encode the condition frames to get the new condition latent
condition_latent, _ = create_condition_latent_from_input_frames(
model, condition_frame_input, num_frames_condition=num_cond_frames
) # BCTHW
condition_latent = condition_latent.to(torch.bfloat16)
# save videos
if model.config.conditioner.video_cond_bool.sample_tokens_start_from_p_or_i:
# decode all video together
decode_latent_list = torch.cat(decode_latent_list, dim=2)
grid_BCTHW = (1.0 + model.decode(decode_latent_list)).clamp(0, 2) / 2 # [B, 3, T, H, W], [0, 1]
video_THWC = (
(grid_BCTHW[0].permute(1, 2, 3, 0) * 255).to(torch.uint8).cpu().numpy().astype(np.uint8)
) # THW3, range [0, 255]
else:
video_THWC = np.concatenate(grid_list, axis=0) # THW3, range [0, 255]
if return_noise:
return video_THWC, condition_latent_list, sample_latent, noise
return video_THWC, condition_latent_list, sample_latent
|