Spaces:
Build error
Build error
File size: 5,870 Bytes
b6af722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A CLI to run ImageTokenizer on plain images based on torch.jit.
Usage:
python3 -m cosmos_predict1.tokenizer.inference.image_cli \
--image_pattern 'path/to/input/folder/*.jpg' \
--output_dir ./reconstructions \
--checkpoint_enc ./checkpoints/<model-name>/encoder.jit \
--checkpoint_dec ./checkpoints/<model-name>/decoder.jit
Optionally, you can run the model in pure PyTorch mode:
python3 -m cosmos_predict1.tokenizer.inference.image_cli \
--image_pattern 'path/to/input/folder/*.jpg' \
--mode torch \
--tokenizer_type CI8x8 \
--checkpoint_enc ./checkpoints/<model-name>/encoder.jit \
--checkpoint_dec ./checkpoints/<model-name>/decoder.jit
"""
import os
import sys
from argparse import ArgumentParser, Namespace
from typing import Any
import numpy as np
from loguru import logger as logging
from cosmos_predict1.tokenizer.inference.image_lib import ImageTokenizer
from cosmos_predict1.tokenizer.inference.utils import (
get_filepaths,
get_output_filepath,
read_image,
resize_image,
write_image,
)
from cosmos_predict1.tokenizer.networks import TokenizerConfigs
def _parse_args() -> tuple[Namespace, dict[str, Any]]:
parser = ArgumentParser(description="A CLI for running ImageTokenizer on plain images.")
parser.add_argument(
"--image_pattern",
type=str,
default="path/to/images/*.jpg",
help="Glob pattern.",
)
parser.add_argument(
"--checkpoint",
type=str,
default=None,
help="JIT full Autoencoder model filepath.",
)
parser.add_argument(
"--checkpoint_enc",
type=str,
default=None,
help="JIT Encoder model filepath.",
)
parser.add_argument(
"--checkpoint_dec",
type=str,
default=None,
help="JIT Decoder model filepath.",
)
parser.add_argument(
"--tokenizer_type",
type=str,
default=None,
choices=[
"CI8x8-360p",
"CI16x16-360p",
"DI8x8-360p",
"DI16x16-360p",
],
help="Specifies the tokenizer type.",
)
parser.add_argument(
"--mode",
type=str,
choices=["torch", "jit"],
default="jit",
help="Specify the backend: native 'torch' or 'jit' (default: 'jit')",
)
parser.add_argument(
"--short_size",
type=int,
default=None,
help="The size to resample inputs. None, by default.",
)
parser.add_argument(
"--dtype",
type=str,
default="bfloat16",
help="Sets the precision. Default bfloat16.",
)
parser.add_argument(
"--device",
type=str,
default="cuda",
help="Device for invoking the model.",
)
parser.add_argument("--output_dir", type=str, default=None, help="Output directory.")
parser.add_argument(
"--save_input",
action="store_true",
help="If on, the input image will be be outputed too.",
)
args = parser.parse_args()
return args
logging.info("Initializes args ...")
args = _parse_args()
if args.mode == "torch" and args.tokenizer_type is None:
logging.error("'torch' backend requires the tokenizer_type to be specified.")
sys.exit(1)
def _run_eval() -> None:
"""Invokes the evaluation pipeline."""
if args.checkpoint_enc is None and args.checkpoint_dec is None and args.checkpoint is None:
logging.warning("Aborting. Both encoder or decoder JIT required. Or provide the full autoencoder JIT model.")
return
if args.mode == "torch":
_type = args.tokenizer_type.replace("-", "_")
_config = TokenizerConfigs[_type].value
else:
_config = None
logging.info(
f"Loading a torch.jit model `{os.path.dirname(args.checkpoint or args.checkpoint_enc or args.checkpoint_dec)}` ..."
)
autoencoder = ImageTokenizer(
checkpoint=args.checkpoint,
checkpoint_enc=args.checkpoint_enc,
checkpoint_dec=args.checkpoint_dec,
tokenizer_config=_config,
device=args.device,
dtype=args.dtype,
)
filepaths = get_filepaths(args.image_pattern)
logging.info(f"Found {len(filepaths)} images from {args.image_pattern}.")
for filepath in filepaths:
logging.info(f"Reading image {filepath} ...")
image = read_image(filepath)
image = resize_image(image, short_size=args.short_size)
batch_image = np.expand_dims(image, axis=0)
logging.info("Invoking the autoencoder model in ... ")
output_image = autoencoder(batch_image)[0]
output_filepath = get_output_filepath(filepath, output_dir=args.output_dir)
logging.info(f"Outputing {output_filepath} ...")
write_image(output_filepath, output_image)
if args.save_input:
ext = os.path.splitext(output_filepath)[-1]
input_filepath = output_filepath.replace(ext, "_input" + ext)
write_image(input_filepath, image)
@logging.catch(reraise=True)
def main() -> None:
_run_eval()
if __name__ == "__main__":
main()
|