File size: 5,870 Bytes
b6af722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""A CLI to run ImageTokenizer on plain images based on torch.jit.

Usage:
    python3 -m cosmos_predict1.tokenizer.inference.image_cli \
        --image_pattern 'path/to/input/folder/*.jpg' \
        --output_dir ./reconstructions \
        --checkpoint_enc ./checkpoints/<model-name>/encoder.jit \
        --checkpoint_dec ./checkpoints/<model-name>/decoder.jit

    Optionally, you can run the model in pure PyTorch mode:
    python3 -m cosmos_predict1.tokenizer.inference.image_cli \
        --image_pattern 'path/to/input/folder/*.jpg' \
        --mode torch \
        --tokenizer_type CI8x8 \
        --checkpoint_enc ./checkpoints/<model-name>/encoder.jit \
        --checkpoint_dec ./checkpoints/<model-name>/decoder.jit
"""

import os
import sys
from argparse import ArgumentParser, Namespace
from typing import Any

import numpy as np
from loguru import logger as logging

from cosmos_predict1.tokenizer.inference.image_lib import ImageTokenizer
from cosmos_predict1.tokenizer.inference.utils import (
    get_filepaths,
    get_output_filepath,
    read_image,
    resize_image,
    write_image,
)
from cosmos_predict1.tokenizer.networks import TokenizerConfigs


def _parse_args() -> tuple[Namespace, dict[str, Any]]:
    parser = ArgumentParser(description="A CLI for running ImageTokenizer on plain images.")
    parser.add_argument(
        "--image_pattern",
        type=str,
        default="path/to/images/*.jpg",
        help="Glob pattern.",
    )
    parser.add_argument(
        "--checkpoint",
        type=str,
        default=None,
        help="JIT full Autoencoder model filepath.",
    )
    parser.add_argument(
        "--checkpoint_enc",
        type=str,
        default=None,
        help="JIT Encoder model filepath.",
    )
    parser.add_argument(
        "--checkpoint_dec",
        type=str,
        default=None,
        help="JIT Decoder model filepath.",
    )
    parser.add_argument(
        "--tokenizer_type",
        type=str,
        default=None,
        choices=[
            "CI8x8-360p",
            "CI16x16-360p",
            "DI8x8-360p",
            "DI16x16-360p",
        ],
        help="Specifies the tokenizer type.",
    )
    parser.add_argument(
        "--mode",
        type=str,
        choices=["torch", "jit"],
        default="jit",
        help="Specify the backend: native 'torch' or 'jit' (default: 'jit')",
    )
    parser.add_argument(
        "--short_size",
        type=int,
        default=None,
        help="The size to resample inputs. None, by default.",
    )
    parser.add_argument(
        "--dtype",
        type=str,
        default="bfloat16",
        help="Sets the precision. Default bfloat16.",
    )
    parser.add_argument(
        "--device",
        type=str,
        default="cuda",
        help="Device for invoking the model.",
    )
    parser.add_argument("--output_dir", type=str, default=None, help="Output directory.")
    parser.add_argument(
        "--save_input",
        action="store_true",
        help="If on, the input image will be be outputed too.",
    )
    args = parser.parse_args()
    return args


logging.info("Initializes args ...")
args = _parse_args()
if args.mode == "torch" and args.tokenizer_type is None:
    logging.error("'torch' backend requires the tokenizer_type to be specified.")
    sys.exit(1)


def _run_eval() -> None:
    """Invokes the evaluation pipeline."""

    if args.checkpoint_enc is None and args.checkpoint_dec is None and args.checkpoint is None:
        logging.warning("Aborting. Both encoder or decoder JIT required. Or provide the full autoencoder JIT model.")
        return

    if args.mode == "torch":
        _type = args.tokenizer_type.replace("-", "_")
        _config = TokenizerConfigs[_type].value
    else:
        _config = None

    logging.info(
        f"Loading a torch.jit model `{os.path.dirname(args.checkpoint or args.checkpoint_enc or args.checkpoint_dec)}` ..."
    )
    autoencoder = ImageTokenizer(
        checkpoint=args.checkpoint,
        checkpoint_enc=args.checkpoint_enc,
        checkpoint_dec=args.checkpoint_dec,
        tokenizer_config=_config,
        device=args.device,
        dtype=args.dtype,
    )

    filepaths = get_filepaths(args.image_pattern)
    logging.info(f"Found {len(filepaths)} images from {args.image_pattern}.")

    for filepath in filepaths:
        logging.info(f"Reading image {filepath} ...")
        image = read_image(filepath)
        image = resize_image(image, short_size=args.short_size)
        batch_image = np.expand_dims(image, axis=0)

        logging.info("Invoking the autoencoder model in ... ")
        output_image = autoencoder(batch_image)[0]

        output_filepath = get_output_filepath(filepath, output_dir=args.output_dir)
        logging.info(f"Outputing {output_filepath} ...")
        write_image(output_filepath, output_image)

        if args.save_input:
            ext = os.path.splitext(output_filepath)[-1]
            input_filepath = output_filepath.replace(ext, "_input" + ext)
            write_image(input_filepath, image)


@logging.catch(reraise=True)
def main() -> None:
    _run_eval()


if __name__ == "__main__":
    main()